
Generalized Olivier Numbers

Abstract. In this paper, we introduce and investigate the generalized Olivier sequences and we deal

with, in detail, two special cases, namely, Olivier and Olivier-Lucas sequences. We present Binet�s formulas,

generating functions, Simson formulas, and the summation formulas for these sequences. Moreover, we give

some identities and matrices related with these sequences. Furthermore, we show that there are close relations

between Olivier, Olivier-Lucas and adjusted Pell-Padovan, third order Lucas-Pell, third order Fibonacci-Pell,

Pell-Perrin, Pell-Padovan numbers.
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1. Introduction

Adjusted Pell-Padovan sequence fMngn�0; third order Lucas-Pell sequence fBngn�0 (OEIS: A099925,

[19]), third order Fibonacci-Pell sequence fGngn�0 (OEIS: A008346, [19]), Pell-Perrin sequence fCngn�0;

Pell-Padovan sequencefRngn�0 (OEIS: A066983, [19]), are de�ned, respectively, by the third-order recurrence

relations

Mn+3 = 2Mn+1 +Mn; M0 = 0;M1 = 1;M2 = 0; (1.1)

Bn+3 = 2Bn+1 +Bn; B0 = 3; B1 = 0; B2 = 4 (1.2)

Gn+3 = 2Gn+1 +Gn; G0 = 1; G1 = 0; G2 = 2; (1.3)

Cn+3 = 2Cn+1 + Cn; C0 = 3; C1 = 0; C2 = 2; (1.4)

Rn+3 = 2Rn+1 +Rn; R0 = 1; R1 = 1; R2 = 1: (1.5)
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We also provide various matrices and identities associated with these sequences.
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The sequences fMngn�0; fBngn�0; fGngn�0; fCngn�0 and fRngn�0 can be extended to negative sub-

scripts by de�ning

M�n = �2M�(n�1) +M�(n�3);

B�n = �2B�(n�1) +B�(n�3);

G�n = �2G�(n�1) +G�(n�3);

C�n = �2C�(n�1) + C�(n�3);

R�n = �2R�(n�1) +R�(n�3);

for n = 1; 2; 3; ::: respectively. Therefore, recurrences (1.1)-(1.5) hold for all integer n: For more details on

the generalized Pell-Padovan numbers and its special cases, see Soykan [26].

Now, we de�ne two sequences related to Adjusted Pell-Padovan, third order Lucas-Pell, third order

Fibonacci-Pell , Pell-Perrin, Pell-Padovan numbers. Olivier and Olivier-Lucas numbers are de�ned as

On = 2On�2 +On�3 + 1; with O0 = 0; O1 = 1; O2 = 1; n � 3;

and

Kn = 2Kn�2 +Kn�3 � 2; with K0 = 4;K1 = 1;K2 = 5 ; n � 3;

respectively.

The �rst few values of Olivier and Olivier-Lucas numbers are

0; 1; 1; 3; 4; 8; 12; 21; 33; 55; 88; 144; 232; 377; :::

and

4; 1; 5; 4; 9; 11; 20; 29; 49; 76; 125; 199; 324; 521; :::

respectively.

The sequences fOng and fKng satisfy the following fourth order linear recurrences:

On = On�1 + 2On�2 �On�3 �On�4; O0 = 0; O1 = 1; O2 = 1; O3 = 3; n � 4;

Kn = Kn�1 + 2Kn�2 �Kn�3 �Kn�4; K0 = 4;K1 = 1;K2 = 5;K3 = 4; n � 4;

There are close relations between Olivier, Olivier-Lucas and Adjusted Pell-Padovan, third order Lucas-

Pell, third order Fibonacci-Pell, Pell-Perrin, Pell-Padovan numbers. For example, they satisfy the following
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interrelations:

2On = Mn+2 +Mn+1 +Mn � 1;

Kn = �2Mn+2 + 3Mn+1 + 4Mn + 1;

10On = �7Bn+2 + 9Bn+1 + 11Bn � 5;

Kn = Bn + 1;

2On = Gn+2 +Gn+1 �Gn � 1;

Kn = 4Gn+2 � 2Gn+1 � 5Gn + 1;

22On = 13Cn+2 � 3Cn+1 � 5Cn � 11;

11Kn = �12Cn+2 + 18Cn+1 + 19Cn + 11;

2On = Rn+2 � 1;

2Kn = �3Rn+2 + 4Rn+1 + 5Rn + 2;

and

Mn = �On+2 + 3On + 1;

5Mn = �9Kn+2 + 8Kn+1 + 12Kn � 11;

Bn = �6On+2 + 5On+1 + 9On + 4;

2Bn = Kn+3 � 2Kn+1 +Kn;

Gn = On+1 �On;

5Gn = 8Kn+2 � 6Kn+1 � 9Kn + 7;

Cn = �12On+2 + 7On+1 + 21On + 8;

5Cn = �24Kn+2 + 18Kn+1 + 37Kn � 31;

Rn = �4On+2 + 2On+1 + 8On + 3;

5Rn = �13Kn+2 + 11Kn+1 + 19Kn � 17:

The purpose of this article is to generalize and investigate these interesting sequence of numbers (i.e.,

Olivier, Olivier-Lucas numbers). First, we recall some properties of the generalized Tetranacci numbers.

The generalized (r; s; t; u) sequence (or generalized Tetranacci sequence or generalized 4-step Fibonacci

sequence) fWn(W0;W1;W2;W3; r; s; t; u)gn�0 (or shortly fWngn�0) is de�ned as follows:

Wn = rWn�1 + sWn�2 + tWn�3 + uWn�4; W0 = c0;W1 = c1;W2 = c2;W3 = c3; n � 4 (1.6)

where W0;W1;W2;W3 are arbitrary complex (or real) numbers and r; s; t; u are real numbers.
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This sequence has been studied by many authors and more detail can be found in the extensive literature

dedicated to these sequences, see for example [8,13,14,18,21,23,24,40,41]. The sequence fWngn�0 can be

extended to negative subscripts by de�ning

W�n = �
t

u
W�(n�1) �

s

u
W�(n�2) �

r

u
W�(n�3) +

1

u
W�(n�4)

for n = 1; 2; 3; ::: when u 6= 0: Therefore, recurrence (1.6) holds for all integers n:

As fWng is a fourth-order recurrence sequence (di¤erence equation), its characteristic equation is

z4 � rz3 � sz2 � tz � u = 0 (1.7)

whose roots are �; �; 
; �: Note that we have the following identities

�+ � + 
 + � = r;

�� + �
 + �� + �
 + �� + 
� = �s;

��
 + ��� + �
� + �
� = t;

��
� = �u:

Using these roots and the recurrence relation, Binet�s formula can be given as follows:

Theorem 1. (Four Distinct Roots Case: � 6= � 6= 
 6= �) For all integers n; Binet�s formula of

generalized Tetranacci numbers is

Wn =
p1�

n

(�� �)(�� 
)(�� �) +
p2�

n

(� � �)(� � 
)(� � �) +
p3


n

(
 � �)(
 � �)(
 � �) +
p4�

n

(� � �)(� � �)(� � 
)
(1.8)

where

p1 = W3 � (� + 
 + �)W2 + (�
 + �� + 
�)W1 � �
�W0;

p2 = W3 � (�+ 
 + �)W2 + (�
 + �� + 
�)W1 � �
�W0;

p3 = W3 � (�+ � + �)W2 + (�� + �� + ��)W1 � ���W0;

p4 = W3 � (�+ � + 
)W2 + (�� + �
 + �
)W1 � ��
W0:

Usually, it is customary to choose �; �; 
; � so that the Equ. (1.7) has at least one real (say �) solutions.

Note that the Binet form of a sequence satisfying (1.7) for non-negative integers is valid for all integers n

(see [9]):
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Next, we consider two special cases of the generalized (r; s; t; u) sequence fWng which we call them

(r; s; t; u)-Fibonacci and (r; s; t; u)-Lucas sequences. (r; s; t; u)-Fibonacci sequence fGngn�0 and (r; s; t; u)-

Lucas sequence fHngn�0 are de�ned, respectively, by the fourth-order recurrence relations

Gn+4 = rGn+3 + sGn+2 + tGn+1 + uGn; (1.9)

G0 = 0; G1 = 1; G2 = r;G3 = r
2 + s;

Hn+4 = rHn+3 + sHn+2 + tHn+1 + uHn; (1.10)

H0 = 4;H1 = r;H2 = 2s+ r
2;H3 = r

3 + 3sr + 3t:

The sequences fGngn�0 and fHngn�0 can be extended to negative subscripts by de�ning

G�n = � t
u
G�(n�1) �

s

u
G�(n�2) �

r

u
G�(n�3) +

1

u
G�(n�4);

H�n = � t
u
H�(n�1) �

s

u
H�(n�2) �

r

u
H�(n�3) +

1

u
H�(n�4);

for n = 1; 2; 3; ::: respectively. Therefore, recurrences (1.9) and (1.10) hold for all integers n:

For all integers n; (r; s; t; u)-Fibonacci and (r; s; t; u)-Lucas numbers (using initial conditions in (1.9) or

(1.10)) can be expressed using Binet�s formulas as in the following corollary.

Corollary 2. (Four Distinct Roots Case: � 6= � 6= 
 6= �) Binet�s formula of (r; s; t; u)-Fibonacci and

(r; s; t; u)-Lucas numbers are

Gn =
�n+2

(�� �)(�� 
)(�� �) +
�n+2

(� � �)(� � 
)(� � �) +

n+2

(
 � �)(
 � �)(
 � �) +
�n+2

(� � �)(� � �)(� � 
)

and

Hn = �
n + �n + 
n + �n;

respectively.

Proof. Take Wn = Gn and Wn = Hn in Theorem 1, respectively. �
Next, we give the ordinary generating function

1P
n=0

Wnz
n of the sequence Wn:

Lemma 3. Suppose that fWn(z) =
1P
n=0

Wnz
n is the ordinary generating function of the generalized

(r; s; t; u) sequence fWngn�0: Then,
1P
n=0

Wnz
n is given by

1X
n=0

Wnz
n =

W0 + (W1 � rW0)z + (W2 � rW1 � sW0)z
2 + (W3 � rW2 � sW1 � tW0)z

3

1� rz � sz2 � tz3 � uz4 : (1.11)

Proof. For a proof, see Soykan [21, Lemma 1]. �
The following theorem presents Simson�s formula of generalized (r; s; t; u) sequence (generalized Tetranacci

sequence) fWng.
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Theorem 4 (Simson�s Formula of Generalized (r; s; t; u) Numbers). For all integers n; we have������������

Wn+3 Wn+2 Wn+1 Wn

Wn+2 Wn+1 Wn Wn�1

Wn+1 Wn Wn�1 Wn�2

Wn Wn�1 Wn�2 Wn�3

������������
= (�1)nun

������������

W3 W2 W1 W0

W2 W1 W0 W�1

W1 W0 W�1 W�2

W0 W�1 W�2 W�3

������������
: (1.12)

Proof. (1.12) is given in Soykan [20]. �
The following theorem shows that the generalized Tetranacci sequence Wn at negative indices can be

expressed by the sequence itself at positive indices.

Theorem 5. For n 2 Z; for the generalized Tetranacci sequence (or generalized (r; s; t; u)-sequence or

4-step Fibonacci sequence) we have the following:

W�n =
1

6
(�u)�n(�6W3n + 6HnW2n � 3H2

nWn + 3H2nWn +W0H
3
n + 2W0H3n � 3W0HnH2n)

= (�1)�n�1u�n(W3n �HnW2n +
1

2
(H2

n �H2n)Wn �
1

6
(H3

n + 2H3n � 3H2nHn)W0):

Proof. For the proof, see Soykan [22, Theorem 1.]. �
Using Theorem 5, we have the following corollary, see Soykan [22, Corollary 4].

Corollary 6. For n 2 Z; we have

(a): 2 (�u)n+4G�n = �(3ru2 + t3 � 3stu)2G3n � (2su � t2)2G2n+3Gn � (�rt2 � tu + 2rsu)2G2n+2Gn
�(�st2+2s2u+4u2+rtu)2G2n+1Gn+2(3ru2+t3�3stu)((�2su+t2)Gn+3+(�rt2�tu+2rsu)Gn+2+

(�st2+2s2u+4u2+rtu)Gn+1)G2n+2(2su�t2)(�rt2�tu+2rsu)Gn+3Gn+2Gn+2(2su�t2)(�st2+

2s2u+4u2+rtu)Gn+3Gn+1Gn�2(�st2+2s2u+4u2+rtu)(�rt2�tu+2rsu)Gn+2Gn+1Gn�2G3nu4+

u2(�2su+ t2)G2n+3Gn + u2(�rt2 � tu+2rsu)G2n+2Gn + u2(�st2 +2s2u+4u2 + rtu)G2n+1Gn �

2u2(2su� t2)G2nGn+3+2u2(�rt2� tu+2rsu)G2nGn+2+2u2(�st2+2s2u+4u2+ rtu)G2nGn+1�

3u2(3ru2 + t3 � 3stu)G2nGn:

(b): H�n = 1
6 (�u)

�n �
H3
n + 2H3n � 3H2nHn

�
:

Note that G�n and H�n can be given as follows by using G0 = 0 and H0 = 4 in Theorem 5;

G�n =
1

6
(�u)�n(�6G3n + 6HnG2n � 3H2

nGn + 3H2nGn); (1.13)

H�n =
1

6
(�u)�n

�
H3
n + 2H3n � 3H2nHn

�
; (1.14)

respectively.

If we de�ne the square matrix A of order 4 as

A = Arstu =

0BBBBBB@
r s t u

1 0 0 0

0 1 0 0

0 0 1 0

1CCCCCCA
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and also de�ne

Bn =

0BBBBBB@
Gn+1 sGn + tGn�1 + uGn�2 tGn + uGn�1 uGn

Gn sGn�1 + tGn�2 + uGn�3 tGn�1 + uGn�2 uGn�1

Gn�1 sGn�2 + tGn�3 + uGn�4 tGn�2 + uGn�3 uGn�2

Gn�2 sGn�3 + tGn�4 + uGn�5 tGn�3 + uGn�4 uGn�3

1CCCCCCA
and

Un =

0BBBBBB@
Wn+1 sWn + tWn�1 + uWn�2 tWn + uWn�1 uWn

Wn sWn�1 + tWn�2 + uWn�3 tWn�1 + uWn�2 uWn�1

Wn�1 sWn�2 + tWn�3 + uWn�4 tWn�2 + uWn�3 uWn�2

Wn�2 sWn�3 + tWn�4 + uWn�5 tWn�3 + uWn�4 uWn�3

1CCCCCCA
then we get the following Theorem.

Theorem 7. For all integers m;n; we have

(a): Bn = An; i.e.,0BBBBBB@
r s t u

1 0 0 0

0 1 0 0

0 0 1 0

1CCCCCCA

n

=

0BBBBBB@
Gn+1 sGn + tGn�1 + uGn�2 tGn + uGn�1 uGn

Gn sGn�1 + tGn�2 + uGn�3 tGn�1 + uGn�2 uGn�1

Gn�1 sGn�2 + tGn�3 + uGn�4 tGn�2 + uGn�3 uGn�2

Gn�2 sGn�3 + tGn�4 + uGn�5 tGn�3 + uGn�4 uGn�3

1CCCCCCA :

(b): U1An = AnU1:

(c): Un+m = UnBm = BmUn:

Proof. For the proof, see Soykan [21, Theorem 19]. �

Theorem 8. For all integers m;n; we have

Wn+m =WnGm+1 +Wn�1(sGm + tGm�1 + uGm�2) +Wn�2(tGm + uGm�1) + uWn�3Gm: (1.15)

Proof. For the proof, see Soykan [21, Theorem 20]. �
In the next sections, we present new results.

2. Generalized Olivier Sequence

In this paper, we consider the case r = 1; s = 2; t = �1; u = �1: A generalized Olivier sequence

fWngn�0 = fWn(W0;W1;W2;W3)gn�0 is de�ned by the fourth-order recurrence relation

Wn =Wn�1 + 2Wn�2 �Wn�3 �Wn�4 (2.1)

with the initial values W0 = c0;W1 = c1;W2 = c2;W3 = c3 not all being zero. The sequence fWngn�0 can

be extended to negative subscripts by de�ning

W�n = �W�(n�1) + 2W�(n�2) +W�(n�3) �W�(n�4)
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for n = 1; 2; 3; :::: Therefore, recurrence (2.1) holds for all integers n:

Characteristic equation of fWng is

z4 � z3 � 2z2 + z + 1 = (z3 � 2z � 1)(z � 1) = (z2 � z � 1) (z + 1) (z � 1) = 0

whose roots are

� =
1 +

p
5

2
;

� =
1�

p
5

2
;


 = �1;

� = 1:

Note that

�+ � + 
 + � = 1;

�� + �
 + �� + �
 + �� + 
� = �2;

��
 + ��� + �
� + �
� = �1;

��
� = 1:

Note also that

�+ � + 
 = 0;

�� + �
 + �
 = �2;

��
 = 1:

The �rst few generalized Olivier numbers with positive subscript and negative subscript are given in the

following Table 1.

Table 1. A few generalized Olivier numbers
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n Wn W�n

0 W0 W0

1 W1 2W1 �W0 +W2 �W3

2 W2 3W0 �W1 � 2W2 +W3

3 W3 4W1 � 4W0 + 4W2 � 3W3

4 2W2 �W1 �W0 +W3 8W0 � 4W1 � 7W2 + 4W3

5 W2 � 2W1 �W0 + 3W3 9W1 � 12W0 + 12W2 � 8W3

6 4W2 � 4W1 � 3W0 + 4W3 21W0 � 12W1 � 20W2 + 12W3

7 4W2 � 7W1 � 4W0 + 8W3 22W1 � 33W0 + 33W2 � 21W3

8 9W2 � 12W1 � 8W0 + 12W3 55W0 � 33W1 � 54W2 + 33W3

9 12W2 � 20W1 � 12W0 + 21W3 56W1 � 88W0 + 88W2 � 55W3

10 22W2 � 33W1 � 21W0 + 33W3 144W0 � 88W1 � 143W2 + 88W3

11 33W2 � 54W1 � 33W0 + 55W3 145W1 � 232W0 + 232W2 � 144W3

12 56W2 � 88W1 � 55W0 + 88W3 377W0 � 232W1 � 376W2 + 232W3

13 88W2 � 143W1 � 88W0 + 144W3 378W1 � 609W0 + 609W2 � 377W3

Note that the sequences fOng and fKng which are de�ned in the section Introduction, are the special

cases of the generalized Olivier sequence fWng. For convenience, we can give the de�nition of these two

special cases of the sequence fWng in this section as well. Olivier sequence fOngn�0 and Olivier-Lucas

sequence fKngn�0 are de�ned, respectively, by the fourth-order recurrence relations

On = On�1 + 2On�2 �On�3 �On�4; O0 = 0; O1 = 1; O2 = 1; O3 = 3; n � 4;

Kn = Kn�1 + 2Kn�2 �Kn�3 �Kn�4; K0 = 4;K1 = 1;K2 = 5;K3 = 4; n � 4;

The sequences fOngn�0 and fKngn�0 can be extended to negative subscripts by de�ning

O�n = �O�(n�1) + 2O�(n�2) +O�(n�3) �O�(n�4)

K�n = �K�(n�1) + 2K�(n�2) +K�(n�3) �K�(n�4)

for n = 1; 2; 3; ::: respectively.

Next, we present the �rst few values of the Olivier and Olivier-Lucas numbers with positive and negative

subscripts:

Table 2. The �rst few values of the special third-order numbers with positive and negative subscripts.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13

On 0 1 1 3 4 8 12 21 33 55 88 144 232 377

O�n 0 0 0 �1 1 �3 4 �8 12 �21 33 �55 88 �144

Kn 4 1 5 4 9 11 20 29 49 76 125 199 324 521

K�n 4 �1 5 �4 9 �11 20 �29 49 �76 125 �199 324 �521
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Theorem 1 can be used to obtain the Binet formula of generalized Olivier numbers. Using these (the

above) roots and the recurrence relation, Binet�s formula of generalized Olivier numbers can be given as

follows:

Theorem 9. (Four Distinct Roots Case: � 6= � 6= 
 6= � = 1) For all integers n; Binet�s formula of

generalized Olivier numbers is

Wn =
(�W3 � �(1� �)W2 + (��2 + 1)W1 �W0)�

n

4�2 � �� 3

+
(�W3 � �(1� �)W2 + (��2 + 1)W1 �W0)�

n

4�2 � � � 3

+
(�W3 + 2W2 �W0)(�1)n

2
� W3 � 2W1 �W0

2
:

Olivier and Olivier-Lucas numbers can be expressed using Binet�s formulas as follows:

Corollary 10. (Four Distinct Roots Case: � 6= � 6= 
 6= � = 1) For all integers n; Binet�s formulas of

Olivier and Olivier-Lucas numbers are

On =
(2�+ 1)�n

4�2 � �� 3 +
(2� + 1)�n

4�2 � � � 3
� 1
2

n � 1

2

=
1

10

 
(5�

p
5)

 
1�

p
5

2

!n
+ (5 +

p
5)

 
1 +

p
5

2

!n
� 5 (�1)n � 5

!
and

Kn = �
n + �n + 
n + 1 =

 
1 +

p
5

2

!n
+

 
1�

p
5

2

!n
+ (�1)n + 1

respectively.

Note that for all integers n; adjusted Pell-Padovan, third order Lucas-Pell, third order Fibonacci-Pell,

Pell-Perrin, Pell-Padovan numbers can be expressed using Binet�s formulas as

Mn =
1

(�� �)(�� 
)�
n+1 +

1

(� � �)(� � 
)�
n+1 +

1

(
 � �)(
 � �)

n+1

= (
1

2
� 1

10

p
5)�n + (

1

2
+
1

10

p
5)�n � 
n;

Bn = �n + �n + 
n;

Gn =
1p
5
�n � 1p

5
�n + 
n;

Cn = (2� 3p
5
)�n + (2 +

3p
5
)�n � 
n;

Rn = (1� 1p
5
)�n + (1 +

1p
5
)�n � 
n;

respectively, see Soykan [26] for more details. So, by using Binet�s formulas of Olivier, Olivier-Lucas and ad-

justed Pell-Padovan, third order Lucas-Pell, third order Fibonacci-Pell , Pell-Perrin, Pell-Padovan numbers,

(or by using mathematical induction), we get the following Lemma which contains many identities:
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Lemma 11. For all integers n; the following equalities (identities) are true:

(a):

� Mn+1 = On+1 �On:

� Mn = On+3 �On+2 � 2On+1 + 2On:

� 2On+4 = 7Mn+2 + 9Mn+1 + 3Mn � 1:

� 2On =Mn+2 +Mn+1 +Mn � 1:

� Mn = �On+2 + 3On + 1:

(b):

� 10Mn+3 = �3Kn+3 � 2Kn+1 + 14Kn+2 � 9Kn:

� 10Mn = 11Kn+3 � 18Kn+2 � 6Kn+1 + 13Kn:

� Kn+4 = 3Mn+2 + 8Mn+1 + 4Mn + 1:

� Kn = �2Mn+2 + 3Mn+1 + 4Mn + 1:

� 5Mn = �9Kn+2 + 8Kn+1 + 12Kn � 11:

� 8Mn + 9Mn+1 + 5 = 3Kn + 2Kn+1:

(c):

� Bn+3 = 4On+2 �On+1 � 3On:

� Bn = 4On+3 � 6On+2 � 3On+1 + 5On:

� 10On+4 = 3Bn+2 + 19Bn+1 + 11Bn � 5:

� 10On = �7Bn+2 + 9Bn+1 + 11Bn � 5:

� Bn = �6On+2 + 5On+1 + 9On + 4:

� 5Bn + 6Bn+1 � 8 = 9On + 7On+1:

(d):

� 2Bn+3 = 3Kn+3 � 2Kn+1 �Kn:

� 2Bn = Kn+3 � 2Kn+1 +Kn:

� Kn+4 = 2Bn+2 +Bn+1 + 1:

� Kn = Bn + 1:

� Bn = Kn � 1:

(e):

� Gn+3 = 2On+2 �On+1 �On:

� Gn = On+1 �On:

� 2On+4 = 3Gn+2 + 7Gn+1 + 3Gn � 1:

� 2On = Gn+2 +Gn+1 �Gn � 1:

(f):

� 10Gn+3 = 11Kn+3 � 8Kn+2 � 6Kn+1 + 3Kn:

� 10Gn = �7Kn+3 + 16Kn+2 + 2Kn+1 � 11Kn:

� Kn+4 = 4Gn+2 + 3Gn+1 + 1:
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� Kn = 4Gn+2 � 2Gn+1 � 5Gn + 1:

� 5Gn = 8Kn+2 � 6Kn+1 � 9Kn + 7:

� 3Gn + 4Gn+1 + 3 = Kn + 2Kn+1:

(g):

� Cn+3 = 2On+2 +On+1 � 3On:

� Cn = 8On+3 � 12On+2 � 9On+1 + 13On:

� 22On+4 = 39Cn+2 + 35Cn+1 + 7Cn � 11:

� 22On = 13Cn+2 � 3Cn+1 � 5Cn � 11:

� Cn = �12On+2 + 7On+1 + 21On + 8:

� 7Cn + 12Cn+1 � 8 = 3On + 13On+1:

(h):

� 10Cn+3 = �3Kn+3 + 24Kn+2 � 2Kn+1 � 19Kn:

� 10Cn = 31Kn+3 � 48Kn+2 � 26Kn+1 + 43Kn:

� 11Kn+4 = 8Cn+2 + 43Cn+1 + 24Cn + 11:

� 11Kn = �12Cn+2 + 18Cn+1 + 19Cn + 11:

� 5Cn = �24Kn+2 + 18Kn+1 + 37Kn � 31:

� 3Cn + 4Cn+1 + 5 = 3Kn + 2Kn+1:

(i):

� Rn+3 = On+3 �On:

� Rn = 3On+3 � 4On+2 � 4On+1 + 5On:

� 2On+4 = 4Rn+2 + 4Rn+1 +Rn � 1:

� 2On = Rn+2 � 1:

� Rn = �4On+2 + 2On+1 + 8On + 3:

� 2On+1 = 2Rn+1 +Rn � 1:

(j):

� 10Rn+3 = �Kn+3 + 18Kn+2 � 4Kn+1 � 13Kn:

� 10Rn = 17Kn+3 � 26Kn+2 � 12Kn+1 + 21Kn:

� 2Kn+4 = 2Rn+2 + 9Rn+1 + 5Rn + 2:

� 2Kn = �3Rn+2 + 4Rn+1 + 5Rn + 2:

� 5Rn = �13Kn+2 + 11Kn+1 + 19Kn � 17:

� 11Rn + 13Rn+1 + 14 = 2(4Kn + 3Kn+1):
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Proof. We only prove Mn+1 = On+1�On by using Binet�s formulas of Mn and On as the others can be

proved similarly. By using Binet�s formulas, we get

On+1 �On =
(2�+ 1)�n+1

4�2 � �� 3 � (2�+ 1)�n

4�2 � �� 3 +
(2� + 1)�n+1

4�2 � � � 3
� (2� + 1)�n

4�2 � � � 3
� 1
2

n+1 +

1

2

n

=
2�+ 1

4�+ 3
�n +

2� + 1

4� + 3
�n � 1

2
(
 � 1) 
n

=
1

(�� �)(�� 
)�
n+2 +

1

(� � �)(� � 
)�
n+2 +

1

(
 � �)(
 � �)

n+2

= Mn+1

where

�2

(�� �)(�� 
) =
2�+ 1

4�+ 3
;

�2

(� � �)(� � 
) =
2� + 1

4� + 3
;


2

(
 � �)(
 � �) = �1
2
(
 � 1) : �

Next, we give the ordinary generating function
1P
n=0

Wnz
n of the sequence Wn:

Lemma 12. Suppose that fWn
(z) =

1P
n=0

Wnz
n is the ordinary generating function of the generalized

Olivier sequence fWng: Then,
1P
n=0

Wnz
n is given by

1X
n=0

Wnz
n =

W0 + (W1 �W0)z + (W2 �W1 � 2W0)z
2 + (W3 �W2 � 2W1 +W0)z

3

1� z � 2z2 + z3 + z4 :

Proof. Take r = 1; s = 2; t = �1; u = �1 in Lemma 3. �
The previous lemma gives the following results as particular examples.

Corollary 13. Generating functions of Olivier and Olivier-Lucas numbers are

1X
n=0

Onz
n =

z

1� z � 2z2 + z3 + z4 ;

1X
n=0

Knz
n =

4� 3z � 4z2 + z3
1� z � 2z2 + z3 + z4 ;

respectively.

3. Simson Formulas

Now, we present Simson�s formula of generalized Olivier numbers.

Theorem 14 (Simson�s Formula of Generalized Olivier Numbers). For all integers n; we have

yukse
Highlight
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Wn+3 Wn+2 Wn+1 Wn

Wn+2 Wn+1 Wn Wn�1

Wn+1 Wn Wn�1 Wn�2

Wn Wn�1 Wn�2 Wn�3

������������
= (W3�2W2+W0)(W3�2W1�W0)(W

2
3 �W 2

2 +W
2
1 �W 2

0 �W2W3�

2W1W3 +W1W2 +W0W3 + 2W0W2 �W0W1):

Proof. Take r = 1; s = 2; t = �1; u = �1 in Theorem 4. �
The previous theorem gives the following results as particular examples.

Corollary 15. For all integers n; the Simson�s formulas of Olivier and Olivier-Lucas numbers are

given as ������������

On+3 On+2 On+1 On

On+2 On+1 On On�1

On+1 On On�1 On�2

On On�1 On�2 On�3

������������
= 1;

������������

Kn+3 Kn+2 Kn+1 Kn

Kn+2 Kn+1 Kn Kn�1

Kn+1 Kn Kn�1 Kn�2

Kn Kn�1 Kn�2 Kn�3

������������
= 20;

respectively.

4. Some Identities

In this section, we obtain some identities of Olivier and Olivier-Lucas numbers. First, we can give a few

basic relations between fWng and fOng.

Lemma 16. The following equalities are true:

(a): Wn = (8W0 � 4W1 � 7W2 + 4W3)On+5 + (8W1 � 12W0 + 11W2 � 7W3)On+4 + (3W1 � 9W0 +

8W2 � 4W3)On+3 + (12W0 � 9W1 � 12W2 + 8W3)On+2:

(b): Wn = (4W1�4W0+4W2�3W3)On+4+(7W0�5W1�6W2+4W3)On+3+(4W0�5W1�5W2+

4W3)On+2 + (4W1 � 8W0 + 7W2 � 4W3)On+1:

(c): Wn = (3W0�W1�2W2+W3)On+3+(3W1�4W0+3W2�2W3)On+2+(3W2�4W0�W3)On+1+

(4W0 � 4W1 � 4W2 + 3W3)On:

(d): Wn = (2W1 �W0 +W2 �W3)On+2 + (2W0 � 2W1 �W2 +W3)On+1 + (W0 � 3W1 � 2W2 +

2W3)On + (W1 � 3W0 + 2W2 �W3)On�1:

(e): Wn =W0On+1 + (W1 �W0)On + (W2 �W1 � 2W0)On�1 + (W0 � 2W1 �W2 +W3)On�2:

Proof. Note that all the identities hold for all integers n: We prove (a). To show (a), writing

Wn = a�On+5 + b�On+4 + c�On+3 + d�On+2
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and solving the system of equations

W0 = a�O5 + b�O4 + c�O3 + d�O2

W1 = a�O6 + b�O5 + c�O4 + d�O3

W2 = a�O7 + b�O6 + c�O5 + d�O4

W3 = a�O8 + b�O7 + c�O6 + d�O5

we �nd that a = 8W0�4W1�7W2+4W3; b = 8W1�12W0+11W2�7W3; c = 3W1�9W0+8W2�4W3; d =

12W0 � 9W1 � 12W2 + 8W3: The other equalities can be proved similarly. �
Note that all the identities in the above Lemma can be proved by induction as well.

Next, we present a few basic relations between fWng and fKng.

Lemma 17. The following equalities are true:

(a): 10Wn = (22W0� 19W1� 27W2+19W3)Kn+5� (41W0� 22W1� 46W2+27W3)Kn+4� (17W0�

24W1 � 22W2 + 19W3)Kn+3 + (41W0 � 17W1 � 41W2 + 22W3)Kn+2:

(b): 10Wn = �(19W0� 3W1� 19W2+8W3)Kn+4+(27W0� 14W1� 32W2+19W3)Kn+3+(19W0+

2W1 � 14W2 + 3W3)Kn+2 � (22W0 � 19W1 � 27W2 + 19W3)Kn+1:

(c): 10Wn = (8W0 � 11W1 � 13W2 + 11W3)Kn+3 � (19W0 � 8W1 � 24W2 + 13W3)Kn+2 � (3W0 �

16W1 � 8W2 + 11W3)Kn+1 + (19W0 � 3W1 � 19W2 + 8W3)Kn:

(d): 10Wn = �(11W0 + 3W1 � 11W2 + 2W3)Kn+2 + (13W0 � 6W1 � 18W2 + 11W3)Kn+1 + (11W0 +

8W1 � 6W2 � 3W3)Kn � (8W0 � 11W1 � 13W2 + 11W3)Kn�1:

(e): 10Wn = (2W0 � 9W1 � 7W2 + 9W3)Kn+1 � (11W0 � 2W1 � 16W2 + 7W3)Kn + (3W0 + 14W1 +

2W2 � 9W3)Kn�1 + (11W0 + 3W1 � 11W2 + 2W3)Kn�2:

Now, we give a few basic relations between fOng and fKng.

Lemma 18. The following equalities are true:

10On = 11Kn+5 � 13Kn+4 � 11Kn+3 + 8Kn+2;

10On = �2Kn+4 + 11Kn+3 � 3Kn+2 � 11Kn+1;

10On = 9Kn+3 � 7Kn+2 � 9Kn+1 + 2Kn;

10On = 2Kn+2 + 9Kn+1 � 7Kn � 9Kn�1;

10On = 11Kn+1 � 3Kn � 11Kn�1 � 2Kn�2;
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and

Kn = 9On+5 � 13On+4 � 9On+3 + 11On+2;

Kn = �4On+4 + 9On+3 + 2On+2 � 9On+1;

Kn = 5On+3 � 6On+2 � 5On+1 + 4On;

Kn = �On+2 + 5On+1 �On � 5On�1;

Kn = 4On+1 � 3On � 4On�1 +On�2:

5. Relations Between Special Numbers

In this section, we present identities on Olivier, Olivier-Lucas numbers and adjusted Pell-Padovan, third

order Lucas-Pell, third order Fibonacci-Pell, Pell-Perrin, Pell-Padovan numbers. We know from Lemma 11

that

22On = 13Cn+2 � 3Cn+1 � 5Cn � 11;

2Kn = �3Rn+2 + 4Rn+1 + 5Rn + 2:

Note also that from Lemma Lemma 16 and Lemma 17, we have the formulas of Wn as

Wn = (3W0 �W1 � 2W2 +W3)On+3 + (3W1 � 4W0 + 3W2 � 2W3)On+2

+(3W2 � 4W0 �W3)On+1 + (4W0 � 4W1 � 4W2 + 3W3)On;

10Wn = (8W0 � 11W1 � 13W2 + 11W3)Kn+3 � (19W0 � 8W1 � 24W2 + 13W3)Kn+2

�(3W0 � 16W1 � 8W2 + 11W3)Kn+1 + (19W0 � 3W1 � 19W2 + 8W3)Kn:

Using the above identities, we obtain relation of generalized Olivier numbers in the following forms (in

terms of Pell-Perrin and Pell-Padovan numbers):

Lemma 19. For all integers n; we have the following identities:

(a): 22Wn = (7W3 � 12W2 + 4W1 +W0)Cn+2 � (5W3 � 18W2 + 6W1 + 7W0)Cn+1 � (W3 � 8W2 +

10W1 � 3W0)Cn � 11W3 + 22W1 + 11W0:

(b): 2Wn = (W1 �W0)Rn+2 + (W2 �W1)Rn+1 + (W3 �W2 � 2W1 + 2W0)Rn �W3 + 2W1 +W0:

6. On the Recurrence Properties of Generalized Olivier Sequence

Taking r = 1; s = 2; t = �1; u = �1 in Theorem 5, we obtain the following Proposition.

Proposition 20. For n 2 Z; generalized Olivier numbers (the case r = 1; s = 2; t = �1; u = �1) have

the following identity:

W�n =
1

6
(�6W3n + 6KnW2n � 3K2

nWn + 3K2nWn +W0K
3
n + 2W0K3n � 3W0KnK2n):
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From the above Proposition 20 (or by taking Gn = On and Hn = Kn in (1.13) and (1.14) respectively),

we have the following corollary which gives the connection between the special cases of generalized Olivier

sequence at the positive index and the negative index: for Olivier and Olivier-Lucas numbers: takeWn = On

with O0 = 0; O1 = 1; O2 = 1; O3 = 3 and take Wn = Kn with K0 = 4;K1 = 1;K2 = 5;K3 = 4; respectively.

Note that in this case Hn = Kn.

Corollary 21. For n 2 Z; we have the following recurrence relations:

(a): Olivier sequence:

O�n =
1

6
(�6O3n + 6KnO2n � 3K2

nOn + 3K2nOn):

(b): Olivier-Lucas sequence:

K�n =
1

6
(K3

n + 2K3n � 3K2nKn):

We can also present the formulas of O�n and K�n in the following forms.

Corollary 22. For n 2 Z; we have the following recurrence relations:

(a): O�n = 1
6 (�6O3n+6(5On+3�6On+2�5On+1+4On)O2n�3(5On+3�6On+2�5On+1+4On)

2On+

3(5O2n+3 � 6O2n+2 � 5O2n+1 + 4O2n)On):

(b):

(i): 2O�n = �4M2
n � 4M2

n�1 � 4M2
n�2 + (2Mn+2 � 3Mn+1 � 3Mn�1 + 2Mn�2)Mn + (2Mn+1 �

3Mn�2)Mn�1 +M2n +M2n�2 +M2n�4 � 1:

(ii): K�n = �16M2
n�12M2

n�1+8M
2
n�2�(�8Mn+2+12Mn+1+9Mn�1+4Mn�2)Mn+6(Mn+1+

Mn�2)Mn�1 + 4M2n + 3M2n�2 � 2M2n�4 + 1:

(c):

(i): 20O�n = 11B2n + 9B
2
n�1 � 7B2n�2 � 11B2n � 9B2n�2 + 7B2n�4 � 10:

(ii): 2K�n = B
2
n �B2n + 2:

(d):

(i): 4O�n = �16G2n+2 + 12G2n+1 � 15G2n + 39G2n�1 + 35G2n�2 + 8(6Gn+2 � 5Gn+1 + Gn�1 �

6Gn�2)Gn� 24(2Gn+1�Gn�2)Gn�1+16Gn+1Gn+2+4G2n+2� 2G2n+1� 11G2n+2G2n�1+

3G2n�2 + 2G2n�3 + 7G2n�4 � 2:

(ii): 2K�n = �80G2n+2�52G2n+1�119G2n�54G2n�1+140G2n�2+8(30Gn+2�11Gn+1�14Gn�1�

24Gn�2)Gn+96(Gn+1+Gn�2)Gn�1+80Gn+1Gn+2+20G2n+2�10G2n+1�27G2n�4G2n�1�

30G2n�2 + 8G2n�3 + 28G2n�4 + 2:

(e):

(i): 5324O�n = �2160C2n+2 � 6156C2n+1 � 625C2n + 10 641C2n�1 + 8645C2n�2 � 24(�230Cn+2 +

183Cn+1+909Cn�1+598Cn�2)Cn+1656(2Cn+1+13Cn�2)Cn�1+6480Cn+1Cn+2�1980C2n+2+

2970C2n+1 + 737C2n + 1782C2n�1 + 6303C2n�2 � 7722C2n�3 � 5005C2n�4 � 2662:
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(ii): 2662K�n = 8208C
2
n+2 + 26244C

2
n+1 + 24947C

2
n + 306C

2
n�1 � 7980C2n�2 + 24(�874Cn+2 +

339Cn+1+1890Cn�1+552Cn�2)Cn�19872(Cn+1+Cn�2)Cn�1�24624Cn+1Cn+2+7524C2n+2�

11 286C2n+1 � 187C2n � 10 692C2n�1 � 11 682C2n�2 + 7128C2n�3 + 4620C2n�4 + 2662:

(f):

(i): 16O�n = 9R2n+16R
2
n�1+5R

2
n�2�6(4Rn�1+3Rn�2)Rn+24Rn�1Rn�2+6R2n�2�8R2n�3�

2R2n�4 � 8:

(ii): 16K�n = 45R
2
n+2+116R

2
n+1+62R

2
n�28R2n�1�15R2n�2+6(�15Rn+2+4Rn+1+28Rn�1+

9Rn�2)Rn�72(Rn+1+Rn�2)Rn�1�120Rn+1Rn+2+30R2n+2�40R2n+1+14R2n�32R2n�1�

26R2n�2 + 24R2n�3 + 6R2n�4 + 16:

Proof. We use the identities, see Soykan [25],

M�n = �4M2
n +M2n + 2Mn+2Mn � 3Mn+1Mn;

B�n =
1

2
(B2n �B2n);

and

G�n =
1
2 (16G

2
n+2+4G

2
n+1+35G

2
n�4G2n+2+2G2n+1+7G2n�16Gn+2Gn+1�48Gn+2Gn+24Gn+1Gn);

C�n =
1
242 (432C

2
n+2+972C

2
n+1+665C

2
n+396C2n+2�594C2n+1�385C2n�1296Cn+2Cn+1�1104Cn+2Cn+

1656Cn+1Cn);

R�n =
1
8 (16R

2
n+1+9R

2
n+2+5R

2
n+6R2n+2� 8R2n+1� 2R2n� 24Rn+2Rn+1� 18Rn+2Rn+24Rn+1Rn):

We also use the identities

2On = Mn+2 +Mn+1 +Mn � 1;

Kn = �2Mn+2 + 3Mn+1 + 4Mn + 1;

10On = �7Bn+2 + 9Bn+1 + 11Bn � 5;

Kn = Bn + 1;

2On = Gn+2 +Gn+1 �Gn � 1;

Kn = 4Gn+2 � 2Gn+1 � 5Gn + 1;

22On = 13Cn+2 � 3Cn+1 � 5Cn � 11;

11Kn = �12Cn+2 + 18Cn+1 + 19Cn + 11;

2On = Rn+2 � 1;

2Kn = �3Rn+2 + 4Rn+1 + 5Rn + 2:

(a): By using the identity Kn = 5On+3 � 6On+2 � 5On+1 + 4On and Corollary 21, (or by using

Corollary 6 (a)), we obtain (a).
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(b): Since 2On = Mn+2 + Mn+1 + Mn � 1; Kn = �2Mn+2 + 3Mn+1 + 4Mn + 1; and M�n =

�4M2
n +M2n + 2Mn+2Mn � 3Mn+1Mn; we get (b)

(c): Since 10On = �7Bn+2 + 9Bn+1 + 11Bn � 5; Kn = Bn + 1 and B�n = 1
2 (B

2
n � B2n); we obtain

(c).

(d): Since 2On = Gn+2 +Gn+1 �Gn � 1; Kn = 4Gn+2 � 2Gn+1 � 5Gn + 1 and G�n = 1
2 (16G

2
n+2 +

4G2n+1 + 35G
2
n � 4G2n+2 + 2G2n+1 + 7G2n � 16Gn+2Gn+1 � 48Gn+2Gn + 24Gn+1Gn); we get (d).

(e): Since 22On = 13Cn+2 � 3Cn+1 � 5Cn � 11; 11Kn = �12Cn+2 + 18Cn+1 + 19Cn + 11 and

C�n =
1
242 (432C

2
n+2 + 972C

2
n+1 + 665C

2
n + 396C2n+2 � 594C2n+1 � 385C2n � 1296Cn+2Cn+1 �

1104Cn+2Cn + 1656Cn+1Cn), we obtain (e).

(f): Since 2On = Rn+2 � 1; 2Kn = �3Rn+2 + 4Rn+1 + 5Rn + 2 and R�n = 1
8 (16R

2
n+1 + 9R

2
n+2 +

5R2n + 6R2n+2 � 8R2n+1 � 2R2n � 24Rn+2Rn+1 � 18Rn+2Rn + 24Rn+1Rn), we get (f). �

7. Sum Formulas

The following Corollary gives sum formulas of Pell-Padovan numbers.

Corollary 23. For n � 0; Pell-Padovan numbers have the following property:

(a):
Pn

k=0Rk =
1
2 (Rn+3 +Rn+2 �Rn+1 � 1) :

(b):
Pn

k=0R2k = R2n+1 � n:

(c):
Pn

k=0R2k+1 =
1
2 (R2n+3 +R2n+2 �R2n+1 + 2n� 1) :

Proof. It is given in Soykan [26]. �
The following Corollary presents sum formulas of Olivier and Olivier-Lucas numbers.

Corollary 24. For n � 0; Olivier and Olivier-Lucas numbers have the following properties (in terms

of Pell-Padovan numbers):

(a):

(i):
Pn

k=0Ok =
1
4 (3Rn+2 + 3Rn+1 +Rn � 2n� 7):

(ii):
Pn

k=0O2k =
1
2 (R2n+2 +R2n+1 � 2(n+ 1)):

(iii):
Pn

k=0O2k+1 =
1
4 (R2n+2 + 5R2n+1 + 3R2n � 5):

(b):

(i):
Pn

k=0Kk =
1
2 (4Rn+1 + 3Rn + 2n+ 1):

(ii):
Pn

k=0K2k =
1
2 (�R2n+2 + 4R2n+1 + 2R2n + 4n+ 3):

(iii):
Pn

k=0K2k+1 =
1
2 (5R2n+2 �R2n+1 � 2R2n):

Proof. The proof follows from Corollary 23 and the identities

2On = Rn+2 � 1;

2Kn = �3Rn+2 + 4Rn+1 + 5Rn + 2: �
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8. Matrices and Identities Related With Generalized Olivier Numbers

If we de�ne the square matrix A of order 4 as

A =

0BBBBBB@
1 2 �1 �1

1 0 0 0

0 1 0 0

0 0 1 0

1CCCCCCA
and also de�ne

Bn =

0BBBBBB@
On+1 2On �On�1 �On�2 �On �On�1 �On
On 2On�1 �On�2 �On�3 �On�1 �On�2 �On�1
On�1 2On�2 �On�3 �On�4 �On�2 �On�3 �On�2
On�2 2On�3 �On�4 �On�5 �On�3 �On�4 �On�3

1CCCCCCA
and

Un =

0BBBBBB@
Wn+1 2Wn �Wn�1 �Wn�2 �Wn �Wn�1 �Wn

Wn 2Wn�1 �Wn�2 �Wn�3 �Wn�1 �Wn�2 �Wn�1

Wn�1 2Wn�2 �Wn�3 �Wn�4 �Wn�2 �Wn�3 �Wn�2

Wn�2 2Wn�3 �Wn�4 �Wn�5 �Wn�3 �Wn�4 �Wn�3

1CCCCCCA :

then we get the following Theorem.

Theorem 25. For all integers m;n; we have

(a): Bn = An; i.e.,0BBBBBB@
1 2 �1 �1

1 0 0 0

0 1 0 0

0 0 1 0

1CCCCCCA

n

=

0BBBBBB@
On+1 2On �On�1 �On�2 �On �On�1 �On
On 2On�1 �On�2 �On�3 �On�1 �On�2 �On�1
On�1 2On�2 �On�3 �On�4 �On�2 �On�3 �On�2
On�2 2On�3 �On�4 �On�5 �On�3 �On�4 �On�3

1CCCCCCA :

(b): U1An = AnU1:

(c): Un+m = UnBm = BmUn:

Proof. Take r = 1; s = 2; t = �1; u = �1 in Theorem 7. �
Using the above last Theorem and the identity

2On = Rn+2 � 1;

we obtain the following identity for Pell-Padovan numbers.
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Corollary 26. For all integers n; we have the following formula for Pell-Padovan numbers:

An =
1

2

0BBBBBB@
Rn+3 � 1 Rn+4 �Rn+3 �Rn+2 �Rn+1 + 2 �Rn+2 + 1

Rn+2 � 1 Rn+3 �Rn+2 �Rn+1 �Rn + 2 �Rn+1 + 1

Rn+1 � 1 Rn+2 �Rn+1 �Rn �Rn�1 + 2 �Rn + 1

Rn � 1 Rn+1 �Rn �Rn�1 �Rn�2 + 2 �Rn�1 + 1

1CCCCCCA :

Next, we present an identity for Wn+m.

Theorem 27. For all integers m;n; we have

Wn+m =WnOm+1 +Wn�1(2Om �Om�1 �Om�2) +Wn�2(�Om �Om�1)�Wn�3Om:

Proof. Take r = 1; s = 2; t = �1; u = �1 in Theorem 8.. �
As particular cases of the above theorem, we give identities for On+m and Kn+m.

Corollary 28. For all integers m;n; we have

On+m = OnOm+1 +On�1(2Om �Om�1 �Om�2) +On�2(�Om �Om�1)�On�3Om;

Kn+m = KnOm+1 +Kn�1(2Om �Om�1 �Om�2) +Kn�2(�Om �Om�1)�Kn�3Om:

9. Conclusions

In the literature, there have been so many studies of the sequences of numbers and the sequences of

numbers were widely used in many research areas, such as physics, engineering, architecture, nature and

art. Sequences of integer number such as Fibonacci, Lucas, Pell, Jacobsthal are the most well-known second

order recurrence sequences. The Fibonacci numbers are perhaps most famous for appearing in the rabbit

breeding problem, introduced by Leonardo de Pisa in 1202 in his book called Liber Abaci. The Fibonacci

and Lucas sequences are sources of many nice and interesting identities. For example, in [1], authors study

on the solutions of the connection problems between Fermat and generalized Fibonacci polynomials. For

rich applications of second order sequences in science and nature, one can see the citations in [10].

As a fourth order sequence, we introduce the generalized Olivier sequence (and it�s two special cases,

namely, Olivier and Olivier-Lucas sequences) and we present Binet�s formulas, generating functions, Simson

formulas, the sum formulas, some identities, recurrence properties and matrices for these sequences.

We have shown that there are close relations between Olivier, Olivier-Lucas numbers (which are fourth

order linear recurences) and special third order linear recurences (numbers), namely adjusted Pell-Padovan,

third order Lucas-Pell, third order Fibonacci-Pell, Pell-Perrin, Pell-Padovan numbers.

Linear recurrence relations (sequences) have many applications. We now present one of them. The

ratio of two consecutive Padovan numbers converges to the plastic ratio, �P (which is given in (9.1) below);

which have many applications to such as architecture, see [12]. Padovan numbers is de�ned by the third-order

recurrence relations

Pn+3 = Pn+1 + Pn; P0 = 1; P1 = 1; P2 = 1:
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Numerous studies of number sequences have been published in the literature, and these studies have been applied to a wide range of fields including physics, engineering, architecture, nature, and the arts. The most well-known second order recurrence sequences are those based on integer numbers, including the Fibonacci, Lucas, Pell, and Jacobsthal sequences. In Leonardo de Pisa's book Liber Abaci from 1202, which is where he first presented the rabbit breeding conundrum, the Fibonacci numbers are likely most well-known for their appearance.
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The characteristic equation associated with Padovan sequence is x3 � x � 1 = 0 with roots �; � and 
 in

which

� =

 
1

2
+

r
23

108

!1=3
+

 
1

2
�
r
23

108

!1=3
' 1: 32471795724 (9.1)

is called plastic number (or plastic ratio or plastic constant or silver number) and

lim
n!1

Pn+1
Pn

= �:

The plastic number is used in art and architecture. Richard Padovan studied on plastic number in Archi-

tecture and Mathematics in [15, 16].

We now present some other applications of third order sequences.

� For the applications of third order Jacobsthal numbers and Tribonacci numbers to quaternions, see

[5] and [4], respectively.

� For the application of Tribonacci numbers to special matrices, see [39].

� For the applications of Padovan numbers and Tribonacci numbers to coding theory, see [17] and

[2], respectively.

� For the application of Pell-Padovan numbers to groups, see [6].

� For the application of adjusted Jacobsthal-Padovan numbers to the exact solutions of some di¤er-

ence equations, see [3].

� For the application of Gaussian Tribonacci numbers to various graphs, see [38].

� For the application of third-order Jacobsthal numbers to hyperbolic numbers, see [7].

� For the application of Narayan numbers to �nite groups see [11].

� For the application of generalized third-order Jacobsthal sequence to binomial transform, see [27].

� For the application of generalized Generalized Padovan numbers to Binomial Transform, see [29].

� For the application of generalized Tribonacci numbers to Gaussian numbers, see [30].

� For the application of generalized Tribonacci numbers to Sedenions, see [31].

� For the application of Tribonacci and Tribonacci-Lucas numbers to matrices, see [32].

� For the application of generalized Tribonacci numbers to circulant matrix, see [33].

Next, we list some applications of fourth order sequences.

� For the application of Tetranacci and Tetranacci-Lucas numbers to quaternions, see [34].

� For the application of generalized Tetranacci numbers to Gaussian numbers, see [35].

� For the application of Tetranacci and Tetranacci-Lucas numbers to matrices, see [36].

� For the application of generalized Tetranacci numbers to binomial transform, see [37].
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