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Abstract 5 

Rainfall holds critical significance for water resource applications, particularly in rainfed 6 

agricultural systems. This study employs the Autoregressive Integrated Moving Average 7 

(ARIMA) technique, a data mining approach commonly used for time series analysis and 8 

future forecasting. Given the increasing importance of climate change forecasting in averting 9 

unexpected natural hazards such as floods, frost, forest fires, and droughts, accurate weather 10 

data forecasting becomes imperative. The objective of this study was to develop a Seasonal 11 

Auto-Regressive Integrative Moving Average (SARIMA) model for forecasting weekly 12 

rainfall in Junagadh Station, Gujarat. Utilizing 53 years of historical data (1963 to 2016), the 13 

SARIMA model predicts weekly rainfall for the subsequent five years (2018 to 2022). 14 

Through comprehensive evaluation using ACF and PACF plots, AIC, SBC, MAPE, and 15 

MAE values, the study identifies SARIMA (0,0,4)(0,1,1)52 as the optimal model, offering 16 

the most accurate prediction. The robust results affirm that the SARIMA model provides 17 

reliable and satisfactory weekly rainfall predictions. This research contributes valuable 18 

insights into the precision and efficacy of SARIMA models for rainfall forecasting, aiding in 19 

strategic water resource management in the Junagadh region. 20 

Key Words :SARIMA, AIC, BIC, MAPE, SIC 21 

1. INTRODUCTION  22 

Efficient water resource management relies heavily on accurately forecasting rainfall 23 

for a given area or station (Kumar et al., 2021; Kumar et al., 2021a; Kumar et al., 2022). In 24 
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the context of Indian agriculture, the southwest monsoon (June-September) plays a pivotal 25 

role in the agrarian economy, with adequate rainfall being essential for robust crop 26 

production (Kumar et al., 2021). Rainfall, among various hydrological parameters, is crucial 27 

for tasks such as irrigation planning, runoff modeling, and drought and flood management. 28 

The dynamic nature of rainfall patterns, influenced by changing climatic conditions, gives 29 

rise to challenges like flooding, landslides, and drought (Shivhare et al., 2017), significantly 30 

impacting agriculture and farming. In a country like India, where agriculture is a backbone, 31 

the success or failure of crops is a primary concern, and even slight variations in seasonal 32 

rainfall and temperature can have devastating effects on crops (Shivhare et al., 2018).The 33 

runoff characteristics, both in terms of quantity and quality, in the majority of watersheds, 34 

spanning from micro to macro scales, are significantly shaped and controlled by 35 

spatiotemporal variations in rainfall. (Ram, Bhavin et.al, 2023a) 36 

Accurately predicting future climate data is a challenging task (Nikam and Meshram, 37 

2013). The accuracy and adequacy of rainfall data serve as the essential cornerstone for 38 

determining the ultimate success of any progressive endeavors in natural resource 39 

management (Ram, Bhavin et.al, 2023b). Despite the development of various algorithms, 40 

achieving precise forecasting remains a challenge. Time series models, integral in 41 

meteorology and hydrology, tackle the key problem of forecasting in statistics and Data 42 

Science. Data transforms into a time series when sampled based on a time-bound attribute 43 

like days, months, and years, inherently possessing an implicit order. Forecasting involves 44 

predicting future values using this ordered data. Stochastic models, evolving over time (Box 45 

and Jenkins, 1994), encompass autoregressive (AR) models, moving average (MA) models of 46 

different orders (Gupta and Kumar, 1994, and Verma, 2004), and auto-regressive moving 47 

average (ARMA) models of discrete orders (Katz and Skaggs, 1981; Chhajed, 2004; Katimon 48 

and Demon, 2004) for annual streamflow. Two widely used forecasting algorithms, ARIMA 49 
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and SARIMA, address the challenge. ARIMA considers past values (autoregressive, moving 50 

average) to predict future values, while SARIMA incorporates seasonality patterns, making it 51 

more potent for forecasting complex data spaces containing cycles. The ARIMA model 52 

emerges as a valuable tool, handling various dimensions related to univariate time series 53 

model selection, parameter optimization, and prediction. In the current study, our focus was 54 

on developing a seasonal rainfall forecasting model to predict the weekly rainfall time series 55 

for Junagadh city in Gujarat, India, utilizing 58 years (1965-2022) of weekly rainfall data. 56 

2. MATERIAL AND METHODS 57 

2.1 Study location 58 

Junagadh is geographically situated between latitude 21°31'23.29" N and longitudes 59 

70°27'17.90" E, at an altitude of 86 meters above mean sea level in the South Saurashtra 60 

region of Gujarat state. The climate of the study area is subtropical and semi-arid, 61 

characterized by an average annual rainfall of 929.81 mm, which is concentrated between 62 

mid-June and mid-October. The average annual pan evaporation is 5.6 mm/day. The coldest 63 

month is January, with a mean monthly temperature ranging from 7°C to 15°C. The 64 

maximum monthly temperature is recorded in May, varying between 29.50°C to 39.40°C. 65 

Relative humidity fluctuates between 45% and 89%, while wind speeds range from 2 to 9.70 66 

km/h. 67 

2.2 Data  68 

 69 

In this study, weekly rainfall data spanning 58 years (1965-2022) were collected from the 70 

Agrometeorology Department of Junagadh Agricultural University, Junagadh. Forecasts were 71 

made for the five years (2018-2022) using a seasonal ARIMA model. 72 
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2.3 Methodological Description  73 

Seasonal ARIMA (SARIMA) modelling  74 
An autoregressive model of order p is conventionally classified as AR(p), and a moving 75 

average model with q terms is known as MA(q). A combined model that includes p AR-terms 76 

and q MA-terms is referred to as an ARMA(p, q) model. To address non-stationarity, a 77 

generally non-stationary time series is transformed into a stationary one by computing 78 

differences shifted by d lags, where in most cases, d=1. Such a model is then categorized as 79 

ARIMA(p, d, q), where the symbol "I" signifies "integrated."The general form of the above 80 

model, describing the current value y(t) of a time series by its own past, is expressed as: 81 

 82 

𝛟𝐩 𝐁 Ø𝐏 𝐁𝐬 𝛁𝐝𝛁𝐬
𝐃𝐲𝐭 = 𝚯𝐐 𝐁𝐬 𝛉𝐪 𝐁 𝛆𝐭(1) 83 

 84 

Where ϕp B = 1 − ϕ1𝐵 − ⋯ 𝜙𝑝𝐵𝑝= Non Seasonal autoregressive (AR) operator; 85 

θq B = 1 − θ1B − ⋯ − θqBq=Non Seasonal moving average operator (MA)                    86 

operator; ØP Bs = 1 − Ø1𝐵𝑠 − ⋯ − Ø𝑝𝐵𝑠𝑃= Seasonal auto regressive (SAR) operator; 87 

ΘQ Bs = 1 − Θ1Bs − ⋯ − ΘQ BsQ = Seasonal moving average operator (SMA). Here, B = 88 

backshift operator (i.e. B
1
Yt= Yt-1, B

2
Yt=Yt-2 and so on); s = the seasonal lag; εt= sequence of 89 

independent normal error variables with mean zero and variance σ2; p and q are orders of 90 

non-seasonal auto-regression and moving average parameters respectively and P and Q are 91 

that of the seasonal auto regression and moving average parameter respectively; d and D 92 

denote the non-seasonal and seasonal differences respectively. 93 

The main stages in setting up an ARIMA forecasting model include model 94 

identification, model parameter estimation, and diagnostic checking for the identified model's 95 

appropriateness for modeling and forecasting. The classical Box-Jenkins model describes 96 

stationary time series. Thus, tentatively identifying a Box-Jenkins model requires verifying 97 

the time series for stationarity. Stationary models assume that the process remains in 98 
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equilibrium around a constant mean level, indicated when the plotting shows that the data 99 

fluctuates around its constant mean.A cursory examination of the graph of the data and the 100 

structure of autocorrelation and partial correlation coefficients at various lags may provide 101 

clues to the presence of stationarity. If the model is found to be non-stationary, stationarity 102 

could mostly be achieved by differencing the series. The next step in the identification 103 

process is to find the initial values for the orders of seasonal and non-seasonal parameters, p, 104 

q, and P, Q. These values could be obtained by looking for significant autocorrelation and 105 

partial autocorrelation coefficients. 106 

After choosing the most appropriate model (step 1 above), the model parameters are 107 

estimated (step 2) using the least square method. In this step, values of the parameters are 108 

chosen to minimize the Sum of the Squared Residuals (SSR) between the real data and the 109 

estimated values. Generally, a nonlinear estimation method is used to estimate the identified 110 

parameters to maximize the likelihood (probability) of the observed series given the 111 

parameter values. The methodology uses the following criteria in parameter estimation: 112 

a) The estimation procedure stops when the change in all parameter estimates between 113 

iterations reaches a minimal change of 0.001. 114 

b) The parameters estimation procedure stops when the SSR between iterations reaches a 115 

minimal change of 0.0001. 116 

In the diagnostic checking step (step three), the residuals from the fitted model are 117 

examined for adequacy. This is typically done through correlation analysis using residual 118 

ACF plots and goodness-of-fit tests via Chi-square statistics. If most of the sample 119 

autocorrelation coefficients of the residuals are within the limits ±1.96/√N, where N is the 120 

number of observations upon which the model is based, then the residuals are white noise, 121 

indicating that the model is a good fit. Otherwise, if the autocorrelations are not white noise, 122 
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the model may not adequately represent our time series.In the last phase, i.e., forecasting, we 123 

calculate the point extrapolated prognosis of the time series and eventually the confidence lag 124 

of the prognosis. 125 

Evaluation Criteria 126 

 127 
The other statistical criteria adopted in the study are: 128 

 129 

1) Akaike Information Criterion (AIC) 130 

The AIC is given by  131 

𝐴𝐼𝐶 = 𝑛 ln 𝜎2 + 𝑛 +  
2(𝑘+1)

𝑛−𝑘−2
(2) 132 

 Where n is the size of the sample used for fitting, k is the number of parameters 133 

excluding constant terms, and 2 ( )   is the maximum likelihood estimate of the residual 134 

variance.  135 

2) Schwarz information criterion (SIC)  136 

The SIC is given by 137 

𝑆𝐼𝐶 = 𝑛 ln 𝜎2(ɛ) + 𝑛 + 𝑘 ln 𝑛(3) 138 

 139 

Where n, k and 
2 ( )  are defined in the same way as for the AIC statistic. 140 

3) Mean absolute percentage error (MAPE):  141 

𝑀𝐴𝑃𝐸 =
1

𝑁
  

𝑋𝑡−𝑂𝑡

𝑂𝑡
 𝑁

𝑖=1 × 100  (4) 142 

Where Xt= forecast value at time t; Ot= actual value at time t; N= number of weeks 143 

considered for forecasting. 144 

4) Mean absolute error (MAE) 145 

𝑀𝐴𝐸 =
1

𝑁
  𝑋𝑡 − 𝑂𝑡 

𝑁
𝑖=1  (5) 146 

Where Xt= forecast value at time t; Ot= actual value at time t; N= number of weeks 147 

considered for forecasting. 148 

3. RESULTS AND DISCUSSION 149 

In the present study the time series of weekly rainfall data from 1965 to 2017 were 150 

used to develop the Seasonal ARIMA (SARIMA) modeland the prediction was made for next 151 
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five years (2018-2022) using the developed model. The forecasted values than used for 152 

validation of developed SARIMA model.  153 

3.1 Analysis of Weekly Rainfall Time Series used for Model Development  154 

Data of weekly rainfalls were analysed using Statistical Analysis System (SAS) 155 

software. Auto correlation function (ACF) and Partial Auto correlation function (PACF) of 156 

the original time series of weekly rainfall are shown in figure 1. 157 

 

Figure:1 Graph of weekly Rainfall data series from 1965 to 2017 

 158 
Key statistics summarizing the weekly rainfall time series data used for prediction 159 

spanning the period from 1963 to 2017 were computed. The mean weekly rainfall is 160 

calculated at 17.43, with a standard deviation of 56.75, indicating a notable variability in the 161 

data. The dataset consists of 2743 observations (N). The Augmented Dickey-Fuller (ADF) 162 

test results are presented, revealing significant negative values for the Zero Mean ADF (-163 

36.45), Single Mean ADF (-39.03), and Trend ADF (-39.06). These ADF test statistics 164 

suggest a high likelihood of stationarity in the time series data, particularly with the 165 

consistently low p-values associated with the ADF tests, indicating a rejection of the null 166 
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hypothesis of non-stationarity. The negative values further reinforce the presence of a stable 167 

trend in the data, laying a foundation for the application of time series forecasting models. 168 

The table 1 provides diagnostic measures for a time series, showcasing 169 

autocorrelation (AutoCorr) and partial correlation (Partial) coefficients at different lags. The 170 

Ljung-Box Q statistic with associated p-values is used to test the null hypothesis of no 171 

autocorrelation in the residuals. Notably, all autocorrelation coefficients at various lags are 172 

significant, as indicated by the low p-values (<0.0001). The decreasing pattern in 173 

autocorrelation coefficients with increasing lags suggests a declining influence of past 174 

observations on the current one. The negative partial correlation coefficients imply that the 175 

effect of past observations is adequately captured by the model. These results support the 176 

suitability of the model for forecasting as they align with the assumption of white noise 177 

residuals, essential for robust time series modeling. 178 

 179 
 180 

Table:1 Time series Basic diagnostics 

Lag AutoCorr Ljung-Box Q p-Value Lag Partial 

0 1.0000 - - 0 1.0000 

1 0.2847 222.561 <.0001* 1 0.2847 

2 0.1443 279.741 <.0001* 2 0.0688 

3 0.1365 330.972 <.0001* 3 0.0861 

4 0.1840 424.070 <.0001* 4 0.1294 

5 0.1233 465.845 <.0001* 5 0.0310 

6 0.1141 501.685 <.0001* 6 0.0489 

7 0.1304 548.496 <.0001* 7 0.0638 

8 0.0290 550.819 <.0001* 8 -0.0650 

9 0.0099 551.092 <.0001* 9 -0.0261 

10 -0.0099 551.362 <.0001* 10 -0.0429 

11 -0.0133 551.851 <.0001* 11 -0.0339 

12 -0.0289 554.157 <.0001* 12 -0.0245 

13 -0.0032 554.185 <.0001* 13 0.0130 

14 -0.0651 565.877 <.0001* 14 -0.0637 

15 -0.0477 572.147 <.0001* 15 0.0020 

16 -0.0668 584.453 <.0001* 16 -0.0352 

17 -0.0785 601.493 <.0001* 17 -0.0396 

18 -0.0778 618.215 <.0001* 18 -0.0214 

19 -0.0813 636.475 <.0001* 19 -0.0338 
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Table:1 Time series Basic diagnostics 

Lag AutoCorr Ljung-Box Q p-Value Lag Partial 

20 -0.0868 657.292 <.0001* 20 -0.0355 

21 -0.0848 677.179 <.0001* 21 -0.0150 

22 -0.0872 698.220 <.0001* 22 -0.0334 

23 -0.0869 719.121 <.0001* 23 -0.0216 

24 -0.0885 740.823 <.0001* 24 -0.0265 

25 -0.0880 762.299 <.0001* 25 -0.0295 

 181 

  

Figure:2 Spectral density plots of weekly rainfall time series  

 182 
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Figure:3 ACF plot of weekly rainfall time series  
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Figure :4 PACF plot of weekly rainfall time series 

3.2 Model Development and Parameter Estimation 183 

Figures 3 and 4 provide a detailed depiction of the Autocorrelation Function (ACF) 184 

and Partial Autocorrelation Function (PACF), offering profound insights into the periodic 185 

nature of the variables associated with weekly rainfall. These graphical representations 186 

consistently reveal patterns indicative of seasonal variations within the time series. Building 187 

upon these findings, we assume a yearly period of 52 weeks for the given rainfall time series.  188 
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Figures 5 and 6 provide a concise overview of the SARIMA (0,0,4)(0,1,1) model's 189 

performance in predicting weekly rainfall. Figure 5 illustrates the model's predictions, 190 

showcasing its ability to capture both non-seasonal and seasonal components. The parameters 191 

(0,0,4) indicate the absence of non-seasonal autoregressive and moving average effects, while 192 

(0,1,1) signifies first-order differencing in the seasonal part for stationarity. This visualization 193 

offers a clear representation of how well the SARIMA model aligns with observed weekly 194 

rainfall trends. In Figure 6, the Residual Plot for SARIMA (0,0,4)(0,1,1) allows for a quick 195 

assessment of model residuals. A well-behaved residual plot indicates a well-fitted model, 196 

and  analysing it provides insights into the accuracy and reliability of the SARIMA model in 197 

predicting weekly rainfall. 198 

 199 

 

Fig:5Prediction of weekly rainfall using SARIMA (0,0,4) (0,1,1) 
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Fig:6 Residual Plot for SARIMA (0,0,4) (0,1,1) 

 200 

Following the essential stationarities steps, we systematically explored various orders of 201 

Seasonal ARIMA models tailored to the weekly rainfall series. The model selection process 202 

involved a thorough assessment, considering not only the ACF and PACF charts but also key 203 

metrics such as the Akaike Information Criterion (AIC), Mean Absolute Percentage Error 204 

(MAPE), and Mean Absolute Error (MAE). Following a meticulous evaluation, the Seasonal 205 

ARIMA model (0,0,4)(0,1,1)52 emerged as the optimal choice for accurately forecasting 206 

weekly rainfall in the Junagadh region. Subsequently, a comprehensive five-year forecast 207 

spanning 2018 to 2022 was executed. Visual representations of the selected model dynamics 208 

are thoughtfully presented in Figures 7 and 8, while a detailed breakdown of parameters and 209 

statistical insights is thoroughly documented in Table 2 and Table 3. 210 

Table:2SARIMA (0,0,4) (0,1,1)Model Summary 

DF 2672 

Sum of Squared Innovations 7060778.92 

Sum of Squared Residuals 7258474.63 

Variance Estimate 2642.50708 

Standard Deviation 51.4053215 

Akaike's 'A' Information Criterion 28827.5382 

Schwarz's Bayesian Criterion 28862.8951 

RSquare 0.16994209 

RSquare Adj 0.16839635 

MAPE 09.5698 

MAE 19.5382271 

 -2LogLikelihood 28815.5382 

 211 

 212 

Table-3SARIMA (0,0,4) (0,1,1)Parameter Estimates 

Term Factor Lag Estimate Std Error t Ratio Prob>|t| 

MA1,1 1 1 -0.1159690 0.0193688 -5.99 <.0001* 

MA1,2 1 2 0.0346565 0.0188537 1.84 0.0661 

MA1,3 1 3 0.0436783 0.0193018 2.26 0.0237* 

MA1,4 1 4 -0.0665500 0.0196808 -3.38 0.0007* 

MA2,52 2 52 0.9500147 0.0106861 88.90 <.0001* 

Intercept 1 0 0.1583824 0.0904021 1.75 0.0799 
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  213 

 

Fig:7 ACF Plot for SARIMA (0,0,4) (0,1,1) 
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Fig:8 PACF Plot for SARIMA (0,0,4) (0,1,1) 

 214 

3.3 Comparison of Actual and Predicted weekly rainfall value  215 

 Figure 9 serves as a visual guide for comparing the actual and predicted values of 216 

weekly rainfall over the five-year span from 2018 to 2022. The graph offers a detailed 217 

examination of how well the SARIMA model performs in forecasting weekly rainfall. A 218 

closer inspection reveals a remarkable proximity between the predicted time series and the 219 

actual data series. This visual coherence signifies the SARIMA model's exceptional 220 
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capability to provide accurate and reliable forecasts of rainfall patterns. The model adeptly 221 

captures the nuances and fluctuations present in the observed data, emphasizing its 222 

effectiveness as a valuable forecasting tool. The visual representation in Figure 9 serves as a 223 

compelling endorsement of the SARIMA model's robust performance in predicting weekly 224 

rainfall values. 225 

 

Fig:9Comparison of Actual and Predicted weekly rainfall value of five years  

(2018-2022) 

 226 

4. Conclusion 227 

The study conclusively asserts the efficacy of the Seasonal Autoregressive Integrated 228 

Moving Average (SARIMA) model as an indispensable tool for forecasting weekly rainfall in 229 

the Junagadh region. Boasting commendable accuracy, as evidenced by robust statistical 230 

measures, the SARIMA model emerges as a reliable asset for predicting the intricate patterns 231 

of weekly rainfall. This finding underscores the pivotal role of the Box-Jenkins methodology, 232 

which, through SARIMA, equips decision-makers with valuable insights. Decision-makers 233 

are empowered to forge better strategies and prioritize actions to fortify themselves against 234 

impending weather changes. Such strategic planning is particularly crucial given the potential 235 

enduring impacts of weather fluctuations on the water resources in Junagadh. 236 
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The SARIMA model's predictive prowess not only enhances forecasting precision but 237 

also facilitates proactive decision-making to navigate the dynamic nature of climatic 238 

conditions. By embracing SARIMA within the Box-Jenkins framework, decision-makers can 239 

not only anticipate and plan for upcoming weather variations but also establish resilient 240 

strategies for long-term water resource management. This holistic approach aids in setting 241 

priorities and allocating resources efficiently. In essence, the SARIMA model, bolstered by 242 

the Box-Jenkins methodology, emerges as a key ally for decision-makers, offering a strategic 243 

advantage in mitigating the effects of weather changes and fortifying the water resources of 244 

the Junagadh region against the uncertainties of the future. 245 
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