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Water Wave Solutions Obtained by Hamilton’s Principle 

 

Abstract 

This paper concerns the development and application of the Lagrangian function which is the difference between 

kinetic energy and potential energy of the system. Here irrotational, incompressible, inviscid fluid in finite water 

depth is considered.  . Then Lagrangian function is expanded under the assumption that the dispersion  and the 

nonlinearity   satisfied )( 2 O .Here the Lagrangian function is generalised up to  8O . The elevation of the 

free surface  should be expanded to 
4  order to get the Lagrangian function is in 

8  order.   Here our attention is 

focused on the problem to solve using  Hamilton’s Principle for water wave evolution  and then we show  wave crest 

and trough will be flattened at larger time. 
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Introduction    

Here we have a good discussion on the principles of different kinds of water wave theory. The governing 

mathematical equations of Eulerian conservation of mass, momentum, energy are used to describe different forms of 

water waves. Boussinesq equation represents a shallow water approximation to the exact Laplace problem which 

incorporates the balance between lowest-order dispersion and lowest-level non-linearity. Many researchers have 

tried to derive modified forms of the classical Boussinesq equation over last decades and a number of enhanced 

higher-order Boussinesq equations have been derived improving the dispersion and non-linearity as well as flow 

kinematics and dynamics (e.g., Nwogu(1993), Agnon et al.(1999) ,Madsen et al.(2002,2003) Among these, the 

formulation of Madsen et al.(2002,2003) is most capable of treating highly non-linear waves to kh=25 for 

dispersion, with accurate velocity profiles up to kh=12. Dynamics research on Hamilton systems is an important 

subject in mechanics for a long time. The principles of Hamilton mechanics settled a series of problems effectively 

that could not be solved by other methods, which showed theoretically the importance of Hamilton mechanics. 

Whitham (1965) used fluid dynamics, Hamilton principles and variational principles for water waves and related 
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problems in the theory of nonlinear dispersive waves. Luke (1967) obtained a Lagrangian function yielding the 

Laplace's equation and the boundary conditions at the surface and bottom.. Zakharov(1968)  showed that the water 

elevation and the potential at the free surface are canonical variables when formulating the water-waves problem in 

Hamiltonian formalism, the Hamilton function being the total energy of the fluid. The mathematical properties of 

the Hamiltonian formalism for free surface waves was extensively studied by Miles (1977), Milder (1977), Radder 

(1992) and many other authors. Hou et al.(1998) used the variational principle to establish a nonlinear equation for 

shallow water wave evolution. Ambrosi (2000) gave a Hamilton formulation for surface waves in a layered fluid. 

Lvov and Tabak (2004) developed a Hamilton formulation for long internal waves. Hongli et al.(2006) derived 

water wave solutions using variation method. In this paper solution of water wave equation is derived using 

Hamilton’s principle and then wave model from Euler-Lagrangian equation has been formed. 

Mathematical equations 

From the theory of an ideal and homogeneous fluid ,the vorticity v  is a property associated with the fluid 

elements. It is carried along by the fluid motion. This implies that if a particular fluid element had zero vorticity 

initially, it will always have zero vorticity. The main property of a wave is its ability to transport information, energy 

and momentum over considerable distances without transport of matter. Thus the velocity field associated with the 

wave is irrotational and given by a velocity potential,  , which according to the above  equation  satisfies the 

Laplace equation 

02    

Now the Hamilton’s Principle for irrotational water waves free of side conditions is 
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Here t is time, z is the vertical coordinate, x is the horizontal coordinate, x-axis represents undisturbed surface with 

constant depth H, ),,( tzx is the velocity potential, here ),( tx is the elevation of the free surface, and g is the 

acceleration of gravity. 

Then, we have variation of    within the flow region 

  )3(

.,0

,,0

,02















Hz

txz

zH

z

zxxt







 

The variation of   gives the dynamical boundary condition on the free surface: 
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Formulation   

We introduce the following non-dimensional variables: 
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where k and a are wave number and wave amplitude respectively, and gHc   is typical wave speed for shallow 

water. 

In terms of these non-dimensional variables, above equation can be rewritten as 
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For the convenience of our calculations, the asterisks have been omitted and then kH and
H

a
 stand for the 

dispersion and nonlinearity, respectively. 

Under linear approximation, Eqs. (6) to (9) become 
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Here we use the following coordinate transforms to describe the behaviors of water wave varying slowly with time,  
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In terms of these variables, Eqs. (10) to (13) become 
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Solutions 

The solution of Eq. (14) in the bottom boundary Eq. (16) is  
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where jq is a constant. 

We have the following expression from the dynamical boundary condition (17) 
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Now using these from Eq. (6) we obtain 
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Since z be an arbitrary value in  ,1 , so each coefficient in power of (z + l) must be zero, thus 
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On the other hand, substituting Eq. (20) into Eq. (8) yields 01  . Therefore, for all odds, 0n , i.e.,  
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Now, the expression of velocity potential   is obtained: 
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By linear approximation, we also consider   )23(.cos Xq j  

Therefore, the velocity potential   can be found to be: ).1(coshcos),,(  zXqztx j   

)23(using),1(cosh),,( byztzx  

 

Now 

).1(2cos
4

2cos
4

1

2

2
2

2
22

2

22






































zhqXq

zx
jj 





  



 

 7 

.
2

1
)(

2

1
)1(2sin

8
)1(2cos

4
)1(sinh

)1(2cos
4

2cos
4

)1(cosh

1

2

22
2

2
2

11

2

1

2

1

2
2

1

2

2

22














































































































hqXq
t

zdzdzzhqXdzqdzz
t

dzz
zxt

L

jj

jj  

Neglecting the constant term 
2

1
, the above equation yields 

        )24(
2

1
12sinh

8
12cos

4
1sinh

22
2

2
2


















 jj qXq

t
L  

The case of  2 O , was considered by Benjamin(1967)and Whitham (1967) who obtained the Korteweg  de 

Vries (KdV) equation. Here we also consider the case, and expand Lagrangian function up to  8O order 

 

  )25(
2

1

3

2
2

15

2

3

2
1

4

12cos
42

1
1206

1cos

2

1

242
1

!7!56
1sin

24630

401

360

19

6

1
1

82242422
2

2
2242

2

222
42642

642























Oq

XqXq

XqL

j

jj

j
































































 

Hou et al.(1998) used the lowest-order of  in their article.  
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Substituting it into Eq. (25), we can see that we should expand   to
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Based on the dynamical boundary condition of the free surface Eqn. (9), we have 
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From Eq. (26), equating the coefficients of constant, 
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4  terms, we have 
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Eq.(1) can be rewritten as 0  dL  

where   





2

0

)28(.
2

1
, LdXqqI jj

  

From eq. (28) we have the Lagrangian 

)29(.
64

3

4

1
,

44242
.

jjjj qqqqL  






   

Obviously, Lagrangian is a function of generalized coordinates and generalized velocity. 

Then from Lagrange’s Equation of motion 
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From Eq. (31) it is obvious that jq  decreases with .Lagrange's equations use generalized velocities and 

generalized coordinates where generalizedvelocities be 
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which gives a wave model from Euler- Lagrangian equation. Thus the generalized velocity decreases with time. But 

at larger time generalized velocity will be diminished. 

Conclusion 

Firstly, we have derived the Lagrangian function which is expanded up to  8O , then water wave equations are 

solved using Hamilton’s principle. From Lagrange’s equation of motion, it is seen that the generalized velocity 

decreases with time . Generalized velocity will be diminished when time is large. Again from the above discussion 

of non-dimensional free surface profiles, wave crest and trough will be flattened at larger time. The results obtained 

above can be studied where velocity of wave increases in deep water. 
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