Effect of Prandtl Number on Deissler’s Decay Law of MHD Turbulence at Four-point Correlations

Abstract

Deissler’s decay law plays a significance in Homogeneous and MHD turbulence flow. Fluid Dynamics are an
interesting part of research work which on many branches of science, engineering science and also inmeteorology.
In turbulent flow,the fluid particles show movement and unpredictablebehavior. The effect of number

on Deissler’s energy decompose law of MHD turbulence at 4-point correlations has been described.
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Introduction

In fluid dynamics turbulent flow is a flow system characterized by and whose performance is
actuallyirregular.In space and time,it showssmall momentum circulation, high momentum convection and quickdisparity of
pressure and velocity. In this case , flow parameters are abruptly changed e.g., viscosity causes instability of the
viscosity. The problem of turbulence is very difficult tosolvefor the case of nonlinearity. Turbulent flow problems are
always treated statistically for its irregular conditions. Turbulent flow is alwaysdisorganized but not all disorganized flows
are turbulent.In fact, turbulence is an inter-active movement of eddies of differentsizes.. As a consequence the velocity at
any point varies both in magnitude and direction with respect to time. Such a diffused flow is characterized as turbulent

flow. At Reynolds number 4,000, the nature of flow in-circular pipeis always assumed to be turbulent.

For turbulent flow, a constant source of energy supply is required because turbulence dissipates rapidly as the kinetic
energy is converted into internal energy by viscous shear stress. Turbulent fluctuations the energy losses for the
velocity and pressure distributions in turbulent flows.Reynolds, O. [11] had the first methodicalinvestigation on turbulent

. Reynolds [11], is one of the who studied turbulent flow.

In particular, a turbulent flow exhibits all of the features, e.g. disorganized, chaotic, irregular behavior. In brief, turbulent
flow exhibits irregular temporal behavior at any selected spatial location. Throughout this work, decay of energy of
Magneto-hydrodynamic Turbulent Flow for four- point correlations has been considered. Finally, the result has established
how energy decays due to = effect ofPrandtl Number Kraichnan’s [19] established logically different ideas from previous
efforts for direct interaction approximation.Using Dessilar’s energy decay law Bkar ,pket al. [22] studied “the decay of
energy of MHD turbulence for four-point correlation” and Bkar ,pket al.[23] “it for dust particle system”. He
also obtained [24] “energy decay law for rotating dust . Bkar, pket al.[25] also studied“Effects of first-order
reactant on MHD turbulence at four-point correlation”. Bkar,pk et al,[26] obtained “4-Point Correlations of Dusty Fluid
MHD Turbulent Flow in a 1st order Chemical-Reaction”. Further studied [27]

.Taylor, 1921 [15] developed “the impression of the

Lagrangian correlation coefficient”. Tailor, G. I. [13, 14] and Von Karman, T. [17,18] described “turbulence in terms of



collisions between discrete entities and then set up the thought of velocity correlation at two or more points™. Taylor, G. 1.
derived the “energy spectrum” method to explain the probability density function for energy in the turbulent flow field. The
study of turbulence had been generalized by Boussinesq [1] and Reynolds [11]. Reynolds, O. [11] first found the
remarkable difference between laminar and turbulent . Based on the problems of practical importance Prandtl [10]
established “mixing length” theory such as pipe flows over borders of exact shapes. In 1938 Taylor, G. I. [16] discussed the
non-linearity of the dynamical equations and found the probability distribution of the difference between the velocity
components at two points. [13]

established the design that the velocity of the fluid of turbulent motion is a random continuous function .of position and

time. Kolmogoroff’s [6] contributed to the physics of turbulence

Hopf, E. [4, 5] also constructed theory of the
characteristic functional to turbulence . Some
characteristics of turbulent motion are completed by Kampe de Feriet. J. [3].Applying Fourier transformations they [4, 5,
and 3] established the three dimensional energy spectrum functions.MonuarHossain, et al,[28] obtained homogeneous fluid
turbulence before the final period of decay for four-point correlation in a rotating system for first-order . Azad et
al.[29] obtained the effect of chemical reaction on statistical theory of dusty fluid MHD turbulent flow for certain variables
at three- point distribution functions .Bkar, pket al.[30] also obtained the effect of first order chemical reaction for
force and dust particles for small Reynolds number in the atmosphere over territory.Azadet al.,[31] established effect of
chemical reaction on statistical theory of dusty fluid MHD turbulent flow for certain variables at three- point distribution
functions.Shimin Yu et al.,[32] studied the effect of Prandtl number on mixed convective heat transfer from a porous
cylinder in the steady flow regime. Using Deissler’s decay law [20, 21] and Abdul MalekPh.D Thesis[33]

. Now going to
study the effect of - Prandtl number on Deissler’s decay law at four-point correlations. In this context, a few concepts and
mathematical tools for the foundation of MHD turbulence have been discussed. This report shows some aspects of fluid

dynamics that are relevant to the Deissler’s energy decay law

Four-point Correlation and Spectral Equations

We take the momentum equation of MHD turbulence at the point p and the induction equation of magnetic field fluctuation

m

four point correlation and equations at p’, p”and p” as
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where a):—+§|h| is the total MHD pressure p(X,t) =is the hydrodynamic pressure, p is the fluid density,
Yo

v
P, =— is the Magnetic Prandtl number, v is the kinematics viscosity, A is the magnetic diffusivity, h, (X,t)is the
A

magnetic field fluctuation, uk(x,t) is the turbulent velocity , t is the time, X, is the space co-ordinate and repeated

subscripts are summed from 1to 3.

Multiplying (1) by hlh;'hr'r']'( ) by u,h}’h,’{]’ (3) by u,h'h” (4) by u,h,hj’ and adding the four equations, we than
taking the space or time averages and they are denoted by ( ...... ) or< ........... > . We get
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Using the transformations
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In order to write the (6) to spectral form, we can define the following Fourier transforms
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Interchange of points p’and p”, p'and p” the subscripts i and k; i and j results in the relations
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By use of these facts and (7) to (14), we can write (6) in the form
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If we take the derivative with respect to X, of the momentum (1) at p, we have,
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Equation (19) can be used to eliminate (57/,’7/”7/[;' )from (16) if we take contraction.

Three-point Correlation and Spectral Equations

The spectral equations corresponding to the three-point correlation equations by contraction of the indices i and j are
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Solution Neglecting Quintuple Correlations

Neglecting all the terms on the right side of (16), the equation can be integrated between t; and t to give
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where <¢| 7/;7/},7/;“”>1 is the value of <¢, 7i7/j7m> at t= t; that is stationary value for small values of k, K" and K" when

the quintuple correlations are negligible.
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At t, }/’5 have been assumed independent of; that assumption is not, made for other times. This is one of several

assumptions made concerning the initial conditions, although continuity equation satisfied the conditions. The complete

specification of initial turbulence is difficult; the assumptions for the initial conditions made herein are partially on the basis

of simplicity. Substituting dk” = dk;dk;dk;and integrating with respect tok;", k, ,K; and we get,



%(kk(bllgi’ﬂiﬁ) + pL[(]-Jr Py )(K? +K'?)+2p, KKl (kg BB =

Py : o vt —t)A+ py) [ @+2P, )(K* +k")  2p, Kk’ .
[v(t—tl)(1+ pM)J e P ¢ rpy)? @+ pM)z}]

Py g v(t-t)1+py) (1+2PM)(k2) 2py Kk’ 2
(v(t—tl)(upmj et U T

3
Py ? v(t—t,)1+ p,,) (1+2P,)(k'?)  2p, kk’
+ [c], expl- === . 1 @)
(V(t—tl)(lerM)j ' Pu T Wy )? +(1+pM)}]
Which result in

oH  21k?
—+

ot py

H=G

where

6-k* [ 2xil{k, 4 BB KD) - (ke BBIK K)o

5

exp[——— (t—to)}{@+ Py )(k? +k'2) +2p, Kk Fldk"+ k? [~ Mi[b(ﬁk’)-b(—lé.—lé')]l.
- v

M

L+2p, JK?) | 2P kKoo
-1 2 2
Cotep|(-o’) @+p,) @+ pw)

wk
2

shexpl (~0?) (L4 py )(K2 +K'2) +2p, kk') 1 [exp(x*)dx}ak’ +
0

5

' o .
[ 2P oK) — ok~ KD
B



o r2p, k?)  2p, Kk
t o exp| (-0°) @+ pw)® @+ pu)p |t

oK
2

K'exp [ —?( (1+ py, )k +k'2)+2p, Kk’ ). Iexp(xz)dx}dk’ (23)
0

Here H is the magnetic energy spectrum function, which represents contributions from various wave numbers (or eddy

sizes) to the energy and G is the energy transfer function, which is responsible for the transfer of energy between wave

numbers, (23) which depends on the initial conditions.
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where & is a constant depending on the initial conditions. For the other bracketed quantities above equation is
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Remembering that dk’ = —272'.k'2d(COS 0) andkk’ =kk'cos @, 0 is the angle between K and K’ and carrying out

the integration with respect to @ , we get,
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Integrating - (26) with respect to K' .We has
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and, Gy =671 +Gy2 +Gy3 +Gy4

The quantity Gﬂ represents the transfer function arising owing to consideration of magnetic field at three point correlation

equation; Gy arises from consideration of the four —point equation. Integration over all wave number shows that
dek:O (29)
0

Indicating that the expression for G satisfies the conditions of continuity and homogeneity, physically, it was to be

expected, since G is a measure of transfer of energy and the numbers must be zero. Hence

10



H = e’@{— M}J’G exp{— W}dt 13 (k)exp{_ M}

pM M M

2
where J (k) = Nok

is a constant of integration and can be obtained as by Corrsin [2]
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Then after integration equation
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Here H,and H,magnetic energy spectrum arising from consideration of the three and four —point correlation equations
respectively. The total magnetic turbulent energy is
(hihy)

Hdk (31)
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here
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By using above values, (31) we get
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This is the energy decay law of MHD turbulence for four point correlations.where,

3 3
N D2y 2 7 10
<TA2 >=<h2>=<hihi'>,A=°:)—\/;_V,B=2§0QvG,C:2.§1L1V 2 andD=2&L,v 2.
T

If L;=0and L,=0 thatis C=0 and D=0in (33) than we get,

<TA2>=(h*) = A(t—t))*"* +B,(t—t,) " (34)

This is the energy decay of MHD turbulence in three- point correlations which was obtained earlier by Sarker and Kishore

(12]

Table-1:The value of the constants and parameter used in (33)

Fluid P, v No | & | & |A B C D
Mercur | 0.015 [ 0.10 |.1 |.01 |.02 | .00058 4.18x107 | 3.69x10® | 5.87
y

0.015 [ 008 |.1 | .01 |.02 | .00081 1.6x10° -1.01x10% | 20.03
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Mix Gas | 0.2 | 80 01 |.02 [1.15x10° [ 5.75x10™® | 3.78x10™° | 9.95x10"
0.2 | 200 01 | .02 |3.15x107 | 2.36x107%° | 6.12x10™° | 6.44x10°"
Hyd Gas | .04 | 100 01 | .02 |25x10° [6.8x10"" |2.7x10™ | 9.79x10"
0.4 | 300 01 | .02 [486x107 | 9.4x10% [ 1.9x10™ | 2.3x10™
HelGas | 0.7 | 120 01 | .02 [46x10° [4.8x10™ [7.4x10" | 9.4x107
0.7 | 400 01 | .02 |7.6x107 | 3.4x10" |33x10™ | 1.2x10™°

The graphical representations and explanations

Figure
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Figurel (a):Sketch of

Figure 1(a), Figure 1(b) represents the energy decay curve for four-point correlations of

small as of mercury PM =0.015 and It is observed that the energy decreases more rapidly as viscosity decreases.

(33).Figurel (b):Sketch of

P, =0.2:

(33). When the Prandtl no. is
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Figure-(2a): Sketch of (33) Figure-(2b): Sketch of (33)

Figure-(2a) and Figure-(2b) are the energy curve of (33) when the Prandtl no. is as of mixture of gas for PM =0.2 and

Vv =80 in fig. (2a) and v =200 in fig. (2b). In this case, energy decreases rapidly as viscosity decreases.

107 7|
|1'5 o for the value t g=2.5
for the value t p=2.5
107
; for the value tt g=1.5
1010
for the value t g=2.5
. 107
i) 50108
b. 107 2
) 5 6 7 8 9 10 4 5 6 7 8 9 10
Figure-(3a):Sketch of (33) Figure-(3b):Sketch of (33)

Figure-(3a), Figure-(3b) indicate the curve of energy (33). When the Prandtl no. is as of Hydrogen gas, PM =0.4 and v

=100 and v =300. Result: Energy decreases as well as viscosity decries.

P.=0.7:
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Figure-(4a):Sketch of (33)

Figure-(4a) and Figure-(4b) are the energy curve of

Figure-(4b):Sketch of (33)

(33). When the Prandtl No. is as of Helium gas P,=0.7 and Vv =120

and vV =400. Energy decreases rapidly as viscosity decreases from 400 to 120.

Comparing fig (1a)-(4b): we see that Energy changes rapidly as Prandtl no. changes. Figure (1)-(4): y1, y2, y3,y4, y5and y6

are represented the energy decay curves of MHD turbulence for four-point correlations of

(33) at several times From

figure 1 and Figure 4.we see that, in four- point correlations system energy die out faster than the three- point correlations

system in MHD turbulent flow.

Comparison between four -point and three point correlations of equation:

0.15 - for the value t =2.5

for the value t =1.5
010

"2

0.00025 I

0.00020 -

0.00015 -

0.00010 -

for the value t p=2.5

for the value t p=1.5

energy 77
0.05 -
Time 0.00005 -
4‘1 5 6 7 é 9 16 4‘1 5 6 7 8 9 10
Fig (5a): Energy curves of (33) Fig (5b): Energy curves of (34)

Fig-(5a) and Fig (5b) representsthe energy decay curve for four-point and three-point correlations of equation. When the

Prandtl no. is small as of mercury PM =0.015. It is clear that, in four-point correlations energy decreases more rapidly than

three point correlations.
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for the value t =2.5

x07 - for the value t (=15

b 10~

1o~ energy 72

Fig (6a): Energy curves of (33) Fig (6b): Energy curves of (34)

When the Prandtl no. is as of mixture of gas PM =0.2 i.e. for large Prandtl no. we conclude that, energy at four- point

correlations and three -point correlations has no change significantly.

107 010 7
for the value t g=2.5
for the value t 9=2.5
107 0T for the value t p=1.5
for the value t p=2.5
b. 7107 | o
T2
b 10 7 T ,
enfrgy T
_
4 5 5 7 8 9 | 4 5 6 7 8 9 10
Fig (7a) Energy curves of equ.(33) Fig (7b) Energy curves of equ.(34)
Fig-(7a) and Fig-(7b) indicate the energy curve equation (33) and When the Prandtl ' ©. - of Hydrogen gas PM =0.4.

We observed that there is no change in energy for four point and three point correlations as for same viscosity

Conclusion

e For mercury, I observed that the energy decreases more rapidly as viscosity decreases.

e In Helium gas forP,=0.7 and v =120 and v =400. Energy decreases rapidly as viscosity decreases.
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e It is observed that the decay law for four-point correlations systems energy decreases rapidly more and more by
exponential manner than the decreases of three point correlation systems.

. observed that there is no change in energy for four point and three point correlations as for same viscosity.

o If the time increases than energy decay also increases.

o We finally conclude that fromall above the figures that energy decreases as viscosity and Prandtl number decrease.
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