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.
Abstract

The paper aims at solving two systems of nonlinear partial differential equations , namely
the Fisher-Murray and the Fitz Hugh-Nagumo which are two different mathematical models
often used to study ecological and biological phenomena. These systems of equations are solved
using the numerical Method of Lines(MOL)and the computed solution are compared with
the ones obtained from SBA method(combination of Adomian method, Picard and successive
approximation) by means of Matlab routines. The results showed the accuracy and the effeciency
of two methods.

Mots clés : MOL ; Systems of nonlinear PDE Fitz Hugh-Nagumo ; Systems of
nonlinear PDE Fisher-Murray ; Matlab.
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1 Introduction

1 Introduction
System of nonlinear equations arise in many fields of applied mathematics and engineering.

The Fitz Hugh-Nagumo and Fisher-Murray systems are two examples of nonlinear systems
of equations. The Fisher-Murray system models the propagation of biological limits, the dif-
fusion of a population in an environment. This is derived from a diffusion reaction equation
whereas Fitz Hugh-Nagumo model describes neuronal oscillations and excitability . The moti-
vation behind the determination of solution to these systems will lead us to an understanding
of the patterns of propagation, developpement and behaviour of population in the case of
Fisher-Murray system, as well as for the mode of operation of neuronal oscillations for the Fitz
Hugh-Nagumo model. These two models help researchers to predict, understand and control
a wide range of natural and biological phenomena. The methods to find their solutions are of
fondamental importance. As analytical solution are rarely available, the research of efficient
numerical methods are essential. Consider the following system of nonlinear partial differential
equations ([10]; [12]; [13]) of type{

ut = k1uxx +R (u, ux, v, vx) , (x, t) ∈ Ω× [0, T ]
vt = k2vxx +Q (u, ux, v, vx) , (x, t) ∈ Ω× [0, T ]

(1.1)

where u = u(x, t) and v = v(x, t) are dependant variable of independant spatial variable
x ∈ Ω = [0.L] and temporal t ∈ [0, T ] , R and Q are the reaction nonlinear functions of
u,ux,v,vx. The contants coefficients k1 > 0 and k2 > 0 are the thermal diffusibility of the media.

For brievity ut =
∂u

∂t
and uxx =

∂2u

∂x2
. The system of equations (1.1) wil be solved on the spatial

interval [0, L] subject to boundary conditions for u{
u(0, t) = a(t)
ux (L, t) = b(t)

(1.2)

and for v {
v(0, t) = α(t)
vx (L, t) = β(t), t ∈ [0, T ]

(1.3)

and the initial conditions {
u(x, 0) = s(x)
v (x, 0) = r(x), x ∈ [0, L]

(1.4)

The boundary condiions (1.2) and (1.3) give the values of the two solution and their flux at the
two ends of space domain as function of t. The equations in (1.4) specify the initial conditions.

We aim at solving numerically this problem, using the Method of Lines(MOL) ([1], [2], [3]; [4], [5])
and compared with SBA method. To solve the nonlinear systems of partial differential equation,
we want to transform them into an ordinary differential equation . To achieve this, we need
to eliminate the space variable by discretization and retain the time variable, thus creating
an ordinary differential equation. The Somé Blaise Abbo(SBA) method ([24], [25], [26], [27]) is
an efficient algorithm used by researchers to solve partial differential equations and ordinary
differential equations. This method meets the challenges of Adomian polynomial calculations.
The basic idea is to see the consistency between the analytical Somé Blaise Abbo method and
the numerical lines method, and to analyse which of the two methods provides a less costly
solution.
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2 METHOD

The paper is organized as follows. In section 2 we describe the Method Of Lines. In section 3,
we apply these methods for solving two numerical example : the system of non linear equations
of FitzHugh-Nagumo and the system of nonlinear equations of Fisher-Murray.

2 METHOD
We have the choice to discretize both in space and time to obtain a set of nonlinear al-

gebraic equations(AEs) or to discretize only the space derivative and obtaining a set of non
linear differential algebraic equations(DAEs). The last approach is retained in this work.The
method of lines(MOL) ([6], [17], [22], [23], [24]) is a general way to convert a partial differential
equation(PDE) [14]; [15] in the form of system of ordinary differential equations(ODE) see [11],
[17] [20].[21] The derivatives with respect to the space variables in PDE are discretized to ob-
tain a system of ODEs in time variable ([13]). A suitable ODE solver ([19] [20]) is used for the
solution of ODE system. This method is give a very accurate numerical solution for linear and
non linear PDE. We define a uniform mesh 0 = x0 < x1 < ... < xN = L with

xi = (i− 1)h, i = 1, 2, ..., N, h =
L

N − 1
(2.1)

to approximate (1.1) along x = xi with{
ut (xi, t) = k1uxx (xi, t) +R (u (xi, t) , ux (xi, t) , v (xi, t) , vx (xi, t)) ,
vt (xi, t) = k2vxx (xi, t) +Q (u (xi, t) , ux (xi, t) , v (xi, t) , vx (xi, t)) , i = 1, 2, ..., N − 1

(2.2)
Let ui (t) = u (xi, t) and vi (t) = v (xi, t) . The equation (1.1) can be dsicretized on the uni-
form mesh (2.1), using the finite difference method [16] [17] [18] with the central difference
approximation to obtain

dui
dt

(t) = k1
ui+1 (t)− 2ui(t) + ui−1

h2
+Ri , i = 1, 2, ..., N − 1

dvi
dt

(t) = k2
vi+1 (t)− 2vi(t) + vi−1 (t)

h2
+Qi , i = 1, 2, ..., N − 1

(2.3)

where
Ri = R (ui , δpi, vi, δqi) , Qi = Q (ui , δpi, vi, δqi) (2.4)

and
δpi =

ui+1 − ui−1

2h
, δqi =

vi+1 − vi−1

2h
(2.5)

The boundary conditions (1.2) can be discretized to give{
u0(t) = a(t)
uN+1 = uN−1 + 2hb(t)

(2.6)

and for v {
v0(t) = α(t)
vN+1 = vN−1 + 2hβ(t)

(2.7)

For initial condition,the discretization of (1.4) give{
ui (0) = si , 1 ≤ i ≤ N
vi (0) = ri, 1 ≤ i ≤ N

(2.8)
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2.1 Vectoriel and matricial form

By introducing 2.6 and (2.7) in (2.3) by taking i = 1 and i = N , we get
du1
dt

(t) =
k1
h2

(u2 (t)− 2ui(t) + a(t)) +R1

dv1
dt

(t) =
k2
h2

(v2 (t)− 2v1(t) + α (t)) +Q1

(2.9)

and 
duN
dt

(t) =
k1
h2

(2uN (t) + 2uN−1(t) + 2hb(t)) +RN

dvN
dt

(t) =
k2
h2

(2vN (t) + 2vN−1(t) + 2hβ (t)) +QN

(2.10)

The equation 
dui
dt

(t) = k1
ui+1 (t)− 2ui(t) + ui−1

h2
+Ri , i = 2, ..., N − 1

dvi
dt

(t) = k2
vi+1 (t)− 2vi(t) + vi−1 (t)

h2
+Qi , i = 2, ..., N − 1

(2.11)

can be added to others in (2.9) and (2.10) .

2.1 Vectoriel and matricial form

We let
w = [u1(t), u2 (t) , ..., uN−1 (t) , uN (t) , v1 (t) , .v2 (t) ..., vN (t)]T (2.12)

F (w ) =



k1
h2

(u2 (t)− 2ui(t) + a(t)) +R1

...

k1
ui+1 (t)− 2ui(t) + ui−1

h2
+Ri

...
k1
h2

(2uN (t) + 2uN−1(t) + 2hb(t)) +RN

k2
h2

(v2 (t)− 2v1(t) + α (t)) +Q1

...

k2
vi+1 (t)− 2vi(t) + vi−1 (t)

h2
+Qi

...
k2
h2

(2vN (t) + 2vN−1(t) + 2hβ (t)) +QN



(2.13)

where 2 ≤ i ≤ N − 1. Using (2.8) as initial condition, and noting by

g = [r1(t), r2 (t) , ..., rN−1 (t) , rN (t) , s1 (t) , .s2 (t) .., sN (t)] T (2.14)

the assciate vectoriel form we then obtain

w (0) = g, (2.15)
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3 NUMERICAL EXPERIMENTS

The equations (2.9) − (2.11) and (2.15) give the following autonomous system of ordinary
differential equation. {

dw

dt
(t) = F (w (t)) , t > 0

w (0) = g
(2.16)

The MOL approximation replaces a PDE system in (1.1) with an initial-value ODE system in
(2.16).This ODE system is integrated using a standard routine. In this way, the solution take
avantage of the progress in ODE numerical integrators available in Matlab like RK4 or ode15s,
ode 23tb, ... for stiff system of ODE.

3 NUMERICAL EXPERIMENTS
In this section, we solve some examples to show the efficiency of the method of lines and

compare the resulting numerical solution with the one obtained by the SBA method.

Exemple 3.1 The first example consider the FITZ Hugh-Nagumo sytem of equations (1.1) −
(1.2) {

ut = ζuxx + 2u+ v,
vt = ζvxx + uv + v2

where L = π, T = 10, k1 = k2 = ζ R (u, v) = 2u+ v, Q (u, v) = uv + v2 with initial conditions{
u (x, 0) = θ1 cosx+ θ2 sinx
v (x, 0) = − (θ1 cosx+ θ2 sinx)

and boundary conditions {
u (0, t) = |θ1| exp(|1− ζ| t)
v (0, t) = − |θ1| exp(|1− ζ| t)

and {
u (π, t) = − |θ1| exp(|1− ζ| t)
v (π, t) = |θ1| exp(|1− ζ| t){
u (π, t) = − |θ1| exp(|1− ζ| t)
v (π, t) = |θ1| exp(|1− ζ| t)

The parameters θ1 = .05 ; θ2 = 1.5 ; ζ = 0.5 are considered for the demonstration The solutions
give by the application of SBA method ([24], [25], [26], [27]) give
u (x, t) = |θ1 cosx+ θ2 sinx| exp(|1− ζ| t) and v (x, t) = − |θ1 cosx+ θ2 sinx| exp(|1− ζ| t) wich
can be used for the comparison of our method.

5 5



3 NUMERICAL EXPERIMENTS

Figure 1 – MOL Solution for u and v at a fixed time

Figure 2 – MOL Solution for u

Figure 3 – MOL Solution for v
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3 NUMERICAL EXPERIMENTS

Figure 4 – SBA Solution for u

Figure 5 – SBA Solution for v

Exemple 3.2 The second example consider the sytem of equations (1.1)−(1.2) de type Fisher-
Murray {

ut = uxx + [u.ux]x + u2 − v2,
vt = vxx − v2x + u2

With L = π, T = 10, k1 = k2 = 1, R (u, ux,v, vx) = [u.ux]x + u2− v2, Q (u, ux, v, vx) = −v2x + u2

with initial conditions{
u (x, 0) = sinx
v (x, 0) = cos x

and boundary conditions{
u (0, t) = 0
v (0, t) = exp(−t)
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3 NUMERICAL EXPERIMENTS


∂u

∂x
(π, t) = − exp(−t)

∂v

∂x
(π, t) = 0

The semi-analytical solution computed using SBA method is given by u (x, t) = sin x exp(−t),
v (x, t) = cos x exp(−t) to be compared with MOL numerical method. The different numerical
analysis for MOL method has been undertaken by dividing the spatial domain Ω = [0, π],

using N=101 with h =
π

N − 1
and replacing derivatives using the finite difference method for

order two. For resulting ODE, we ressort to ODE solver ode15s wich is convenient for stiff
problem in the interval [0, .1]. The comparison was made by confronting the graph provide by

MOL and SBA methods.

Figure 6 – MOL Solution for u and v at a fixed time

Figure 7 – MOL Solution for u
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3 NUMERICAL EXPERIMENTS

Figure 8 – MOL Solution for v

Figure 9 – SBA Solution for u

Figure 10 – SBA Solution for v
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4 Conclusion

The comparison is made using the graphs from the method of lines and those from the Somé
Blaise Abbo method, in fact the graphs represent the semi-analytical solutions and the

numerical solutions.

4 Conclusion
This paper investigated MOL method for solving the on-dimensional systems of nonlinear
partial differential equations and compared the resulting solution of another semi-analytical
SBA method. The method of MOL proceeds in two separate steps. Firstly, spatial derivatives
are replaced with finite difference, using finite difference method, finite element method, finite
volume method, spectral method and the resulting systems of ordinary differential equations
is integraded over time. The availability of high-quality numerical algorithm for solution of
stiff system of odes facillited the computation of the desired results. For our paper we have
chosen the finite difference method for discretization in space because of the simplicity to
implement in Matlab code and the non-complexity of domain. The use of other spatial

discretization methods is not ruled out for future work.
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