
1 
 

CONSTRAINED STOCHASTIC INVENTORY CONTROL MODELS FOR MULTI-
ITEM WITH VARIABLE DEMAND 

 
 

Abstract 

Constrained multi-item inventory system with variable demands are considered. The demand 
rates of five selected multi-item - Cowbell, Milo, SMA, Cerelac and Golden Morn were modeled 
as Weibull, Normal and Lognormal probability distributions respectively with the aid of chi-
squared multinomial goodness-of-fit test. The respective probability distributions with estimated 
location parameters: 491.55, 536.92, 10.5, 2.1926 and 5.3103 were used as the basis of 
probabilistic inventory models to obtain dynamic EOQ for each item under each constraint 
subject to Kuhn, Karush and Tucker (KKT) conditions as against the use of simple averages in 
deterministic inventory models. The optimal values of these constraints: available warehouse 
space (124sq.ft), specified level of inventory (94 units), limited capital (76,671.52 naira) and 
number of orders (1/month) were obtained using the optimal EOQ values to establish optimal 
inventory level and constraints level/capacity for each item in order to avoid shortage or excess 
stock. 

Keywords: Constrained inventory model, multi-item, variable demand, optimal inventory, 

probability distribution, variable demand.  

1. Introduction 

Possessing a high amount of inventory for a long period of time is not usually good for business 

because of inventory storage, obsolescence and spoilage costs. However, possessing too little 

inventory isn't good either, because the business runs the risk of losing out on potential sales and 

potential market share as well. The economic order quantity (EOQ) assumes that demand occurs 

at known constant rate and supply fulfill the replenishment order after a fixed lead time. 

Unfortunately, the real world is not as ideal as that. In reality, demand rate is rarely constant and 

hard-to-predict market is common in most practical situations. Therefore, inventory management 

forecasts and strategies, such as a just-in-time inventory system can be deterministic or 

probabilistic. According to [1] probabilistic EOQ model is an inventory model that is close to the 

real situation that retailers face because demand will vary from time to time. This probabilistic 

inventory model will incorporate the variation of the demand and uncertain lead time. Demand 

variation will cause a shortage especially during lead time when retailer only has a limited 

amount of goods to cover the demand during lead time and the goods ordered have not arrived 

yet. Based on that situation, there are three possibilities that can happen to the probabilistic 
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inventory model: The first one is when demand during lead time is constant but the lead time 

itself varies. The second is when lead time is constant but demand during lead time varies, and 

the last possibility is when both lead time and demand during lead time vary which is the case in 

this study. On this perspective, a multi-objective inventory model of deteriorating items with 

stock dependent demand under limited imprecise storage area and total cost budget was 

formulated by [2] to handled stock-demand control of deteriorating items, while a proposed 

multi-item inventory control model with space capacity constraint for pharmaceutical products 

was considered by [3]. In a dynamic single stage multi-item inventory control model by [4], the 

average holding cost and stock out probabilities for the components were determined considering 

a given service level for customers’ demands and lead time uncertainties. Further studies by [5] 

and [6] have examined inventory policies for multiple substitutable items in case of stock out 

with stochastic demand, fixed ordering costs and constant holding costs in effort to formalize the 

process of maintaining optimal inventory. 

The perspective of probabilistic continuous review inventory models with constant units of cost 

and lead-time demand as a random variable was presented by [7]. He gave heuristic approximate 

treatment for each of the backorders and the lost sales cases, while [8] studied the probabilistic 

single-item, single source (SISS) inventory system with zero lead-time, using classical 

optimization. Also, [9] considered probabilistic price dependent demand and imprecise goal and 

constraints. The objective was to obtain a multi-item inventory model with stochastic price-

dependent demand which probability distribution depends on selling price as a parameters. 

Similarly, Authors in [10] treated multi-item inventory system with budgetary constraint 

comparison between the Lagrange and the fixed cycle approach under the Kuhn, Karush and 

Tucker (KKT) conditions. These conditions were originally named after Harold W. Kuhn and 

Albert W. Tucker, who first published the conditions in 1951 but was later discovered that the 

necessary conditions for this problem had been stated by William Karush in his Master's thesis in 

1939. In a later development, [11] considered both deterministic and probabilistic versions of 

power demand patterns with a variable rate of deterioration, while [12] considered two types of 

holding cost variation: (a) a nonlinear function of storage time and (b) a nonlinear function of 

storage level. According to [13], inventory control problems in real world usually involve 

multiple products which are often necessary for inventory holding thousands of items.  

A l s o ,  t hey examined the difficulties encountered in the practice of inventory control 
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management and concluded that a large gap exists between theory and practice in inventory 

management. In [14], a multi-item probabilistic inventory model that considered expiration 

factor, all unit discount policy and warehouse capacity constraints was considered. The 

characteristics involved in this study were probabilistic demand, perishable products, and 

warehouse constraints for multi-item inventory models. These conditions occur in several 

industries that consider perishable factors and warehouse constraints (example are companies 

that produce food, food sales agents, and retail goods to end customers, among others). The 

Karush-Kuhn-Tucker condition approach was used to solve the warehouse capacity problem to 

find the optimum point of a constrained function. The results yielded two optimal ordering times, 

namely ordering time-based on warehouse capacity and joint order time.  

2. Related works 

A realistic and general single period for multi-item with budgetary and floor or shelf space 

constraints, where demand of item follow uniform probability distribution was developed by 

[15]. Also, [16] developed a multi-item inventory control model with instantaneous supply where 

demand is deterministic and follows uniform distribution for perishable items. The use of KKT 

conditions was also employed by [17] to solve a multi-item inventory model with shortages and 

demand dependent on unit cost with storage space and set up cost constraints. The cost 

parameters were treated as fuzzy variables because of its imprecise nature. Also, [18] developed 

an inventory model for deteriorating and ameliorating items with capacity constraint for storage 

facility. Other factors that were also considered in the model were the effect of inflation and time 

value of money in the profit as well as cost parameter and associated profit. In another 

development a multi-item multi-period inventory control model for known-deterministic variable 

subject to limited available budget was formulated by [19] which considered shortages in 

combination with backorder, unit discount and lost sales. The model was formulated into a fuzzy 

multi-criteria decision making (FMCDM) framework represented as a mixed integer nonlinear 

programming problem with the objectives to minimize both the total inventory cost and the 

required storage space.  

Furthermore, [20] proposed a new general probabilistic multi-item, single source inventory 

model with varying mixture shortage cost under restrictions on backorder cost and expected 

varying lost sales cost. In [1] individual and joint replenishment policies which consisted of 
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several products where the demands for these products followed Gamma distribution were 

formulated. The objective was to determine the optimal ordering quantity that minimizes the 

total cost for each product, and [21] examined the probability distributions of variable demand 

rate of multi-item inventory problem. The result showed that demand of selected products follow 

certain probability distributions namely; normal, uniform and Weibull distributions. Optimal 

order quantities and the probabilities of shortage and no shortage were also obtained for the 

selected products. The multi objective optimization method was utilized by [22] to solve a multi 

item inventory control model which was developed to optimize the total inventory cost and 

inventory layout management using a meta-heuristic algorithm named multi-objective particle 

swarm optimization (MOPSO) algorithm. Furthermore, [23] used the normal and exponential 

distributions in formulating probabilistic multi-item inventory models to minimize the expected 

total cost. Varying mixture of shortage cost (backorders and lost sales) were considered under 

certain constraints. 

 In [24], a deterministic multi-item inventory model where the total variable cost (TVC) was 

used as the objective function subject to a number of fixed constraints limitations/capacities was 

optimized under the KKT conditions to obtain optimal EOQ values for the items. We note that 

the average demand of items in [24] were obtained by the use of simple arithmetic mean formula 

over the period for the deterministic inventory model which does not reflect the dynamic 

behavior of the demand rate of the items, since demand is a variable. On this perspective, this 

work sought to convert the deterministic inventory model to constrained stochastic multi-item 

inventory model by modeling the variable demand rate using appropriate probability distribution 

functions. The identified probability distribution functions shall be used as the basis to obtaining 

dynamic EOQ models and associated parameters estimates for items subject to constraints under 

the KKT conditions. 

1.2 Problem definition and Assumptions 

A distributor company of multi-item gets its supply from different manufacturing companies at 

different times by placing an order to the manufacturing companies. The company is faced with 

several restrictions that limits her capacity to make orders at will and convenience. These 

restrictions (constraints) include total available warehouse space of 650sq.ft and total limited 

capital of 310,000 naira among others. However, only five items were selected out of various 
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multi-items in the warehouse for study with warehouse space, required capital, level of inventory 

and number of orders constraints as unknown. It therefore requires a robust and dynamic 

approach of estimating the demand of each of the selected item to enable her determine the 

ordering frequency and the best quantity to be ordered for each product at appropriate time to 

avoid shortage or excess stock within the sphere of the stated conditions (constraints). The 

capacities/levels of the unknown constraints for the selected items need be obtained to determine 

what quantities are left for the other items not considered in the study. Under this consideration, 

demand rate of an item is assumed to follow a probability distribution. The probability of lead 

time is between zero and one; Pr[ 0 ≤ LT ≤ 1], shortages are not allowed, purchase cost and 

reordering costs do vary with time for a specified period. 

2. Methodology 

2.1 Formulation of EOQ Model with constraints 

The following notations would be used in this work, except otherwise stated: 

TVC = Total variable cost 

n    = total number of items being controlled simultaneously 

௜݂    = floor area (storage space) required per unit of item i (i = 1,2, …, n) 

W   = warehouse space limit to store all items in the inventory. 

λ   = non-negative Lagrange multiplier 

 ௜  = annual demand for ith itemܦ

పഥܦ    = average demand for each item (i = 1,2,3, …, n) 

ܳ௜  = order quantity for items i in inventory (݅ = 1, 2, ..., n) 

M = upper limit of average number of units for all items in the stock  

 ௜   = price per unit of items in the stockܥ

F =   investment limit for all items in the inventory  

 ௢௜  = order cost per order (i = 1,2,3, …, n)ܥ
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 ௛௜  = cost of carrying one unit of an item in the inventory for a given length of timeܥ

A   = Maximum value of order 

 ௜  = Total quantity ordered for each item (i = 1,2,3, …, n)ܤ

S   = Maximum shortage quantity 

Let the decision variables be ܦ௜ ,ܳ௜  :௛௜. The objective function as adapted from [20] isܥ	݀݊ܽ	௢௜ܥ,

Min TVC =	∑ ቂ஽೔
ொ೔
௢௜ܥ + 	ொ೔

ଶ
௛௜ቃ௡ܥ

௜ୀ଴         (1) 

The constraints: 

1. Warehouse space availability:  

∑ ௜݂	
௡
௜ୀ଴ ܳ௜ 		≤ W                             (2) 

2. Capital limited: 

∑ ௡	௜ܥ
௜ୀ଴ ܳ௜ 	 ≤ F                                  (3) 

3. Inventory level specification: 
ଵ
ଶ
∑ ܳ௜௡
௜ୀ଴  				≤ M                              (4) 

4. Order quantities: 

   ∑ ஻೔
ொ೔

௡
௜ୀ଴ 				≤  (5)                         ܣ

5. Non negativity: 

௜,ܳ௜ܦ ௢௜ܥ, ௛௜ܥ	݀݊ܽ	 ≥ 0 

 

The constrained inventory models are: 

1. Min TVC =	∑ ቂ஽೔
ொ೔
௢௜ܥ + 	ொ೔

ଶ
௛௜ቃ௡ܥ

௜ୀ଴  

Subject to:  ∑ ௜݂	
௡
௜ୀ଴ ܳ௜ 		≤ W 

2. Min TVC =	∑ ቂ஽೔
ொ೔
௢௜ܥ + 	ொ೔

ଶ
௛௜ቃ௡ܥ

௜ୀ଴  

Subject to:   ∑ ௡	௜ܥ
௜ୀ଴ ܳ௜ 	 ≤ F 

3. Min TVC =	∑ ቂ஽೔
ொ೔
௢௜ܥ + 	ொ೔

ଶ
௛௜ቃ௡ܥ

௜ୀ଴  

Subject to:  ଵ
ଶ
∑ ܳ௜௡
௜ୀ଴  				≤ M 
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4. Min TVC =	∑ ቂ஽೔
ொ೔
௢௜ܥ + 	ொ೔

ଶ
௛௜ቃ௡ܥ

௜ୀ଴  

Subject to:     ∑ ஻೔
ொ೔

௡
௜ୀ଴ 				≤     ܣ

௜,ܳ௜ܦ ௢௜ܥ, ௛௜ܥ	݀݊ܽ	 ≥ 0 

By applying the KKT necessary and sufficient condition for optimal value of TVC, we obtain the 

following formulations with respect to each constraint: 

1. Optimization of TVC subject to warehouse space available constraint: 

  Min TVC =	∑ ቂ஽೔
ொ೔
௢௜ܥ + 	ொ೔

ଶ
௛௜ቃ௡ܥ

௜ୀ଴  

 Subject to:  ∑ ௜݂ 	
௡
௜ୀ଴ ܳ௜ 		≤ W 

If the warehouse space required for each unit of item, i is fi (i=1,2, … ,n), then the total storage 
area (or volume) required by all n inventory items must be less than or equal to the total available 
space storage area (or volume) of the warehouse. This constraint indicates that even if all items 
reach their maximum inventory levels simultaneously, the warehouse space should be sufficient 
to store the inventory of these items with an assumption that all the five items are received 
together. Thus, the problem is to minimize the total variable inventory cost for each item under 
warehouse constraint. 

Let the Lagrange function be: ܮ(ܳ௜ , ∑]ߣ + TVC = (ߣ ௜݂ܳ௜௡
௜ୀଵ −ܹ]    6) 

=		∑ ቂ஽೔
ொ೔
௢௜ܥ + 	ொ೔

ଶ
௛௜ቃ௡ܥ

௜ୀ଴ + ∑]ߣ	 ௜݂ܳ௜௡
௜ୀଵ −ܹ] 

The necessary condition for L to be minimum with respect to ܳ௜ is: 

డ௅
డொ೔

  = డ
డொ೔

ቈ∑ ቂ஽೔
ொ೔
௢௜ܥ + 	ொ೔

ଶ
௛௜ቃ௡ܥ

௜ୀ଴ + ∑]ߣ	 ௜݂ܳ௜௡
௜ୀଵ −ܹ]቉ = 0 

= -	ଶ஽೔஼೚೔
ொ೔
మ	

 + ஼೓೔
ଶ

 + λ ௜݂ = 0 

݅݋ܥ݅ܦ2− 	+	ܳ݅
2 2λ݂݅ܳ݅2	ℎ݅+ܥ		

ଶொమ೔
  = 0 

௢௜ܥ௜ܦ2-  = -ܳ௜ଶൣܥℎ݅ + 	2λ݂݅	൧ 

ܳ௜ଶ  =  
ଶ஽೔஼೚೔
஼೓೔ାଶ	λ௙೔

 

 ܳ௜∗ =ට
ଶ஽೔஼೚೔

஼೓೔ାଶఒ௙೔
 ;   ݅ = 1,2, … , ݊                             (7)                       

Also, the necessary condition for L to be minimum with respect to ߣ is: 
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డ௅
డఒ

   =  ∑ ௜݂
௡
௜ୀଵ ܳ௜ −ܹ  =  0          

∑ ௜݂
௡
௜ୀଵ ܳ௜ = ܹ ;   since  (8)          0  ≤ ߣ 

        

2. Optimization of TVC subject to limited capital constraint: 

    Min TVC =	∑ ቂ஽೔
ொ೔
௢௜ܥ + 	ொ೔

ଶ
௛௜ቃ௡ܥ

௜ୀ଴  

    Subject to: ∑ ௡	௜ܥ
௜ୀ଴ ܳ௜ 	 ≤ F 

Since investment on inventory is substantial for many organizations, decision makers must put a 

restriction on the amount of inventory to be carried. The inventory control policy is accordingly 

adjusted to achieve the objective of keeping total investment required within limit. Hence, the 

problem is to minimize the total variable inventory cost for each item under the investment 

constraint, along with the assumption that both demand and lead time are constant and known. 

Let the Lagrange function be: ܮ(ܳ௜ , ∑]ߣ + TVC = (ߣ ௜ܳ௜௡ܥ
௜ୀଵ −  (9)    [ܨ

= ∑ ቂ஽೔
ொ೔
௢௜ܥ + 	ொ೔

ଶ
௛௜ቃ௡ܥ

௜ୀ଴ + ∑]ߣ	 ௜ܳ௜௡ܥ
௜ୀଵ −  [ܨ

The necessary condition for L to be minimum with respect to ܳ௜ is: 

డ௅
డொ೔

  = డ
డொ೔

	ቈ	∑ ቂ஽೔
ொ೔
௢௜ܥ + 	ொ೔

ଶ
௛௜ቃ௡ܥ

௜ୀ଴ + ∑]ߣ	 ௜ܳ௜௡ܥ
௜ୀଵ −  ቉ = 0[ܨ

= −	஽೔஼೚೔
ொ೔
మ 	 + ஼೓೔

ଶ
 0 = ݅݋ܥߣ + 

݅ܳ + ݅݋ܥ݅ܦ2-
݅ܳߣℎ݅ + 2ܥ2

 0 =  ݅݋ܥ2

ܳ௜ଶ		 =    ଶ஽೔஼೚೔
஼೓೔ା	ଶߣ஼೚೔

 

ܳ௜∗ =ට
ଶ஽೔஼೚೔

஼೓೔ାଶఒ஼೔
 ;     ݅ = 1,2, … , ݊                                                       (10) 

Also, the necessary condition for L to be minimum with respect to ߣ is: 

 డ௅
డఒ

  =   ∑ ௜௡ܥ
௜ୀଵ ܳ௜ −  0 = ܨ

∑ ௜௡ܥ
௜ୀଵ ܳ௜  =  ܨ;  since ߣ ≥ 0                              (11) 
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3. Optimization of TVC subject to inventory level specification constraint: 

Min TVC =	∑ ቂ஽೔
ொ೔
௢௜ܥ + 	ொ೔

ଶ
௛௜ቃ௡ܥ

௜ୀ଴  

Subject to: ଵ
ଶ
∑ ܳ௜௡
௜ୀ଴ ≤   ܯ

Since the average number of units in the inventory of an item,	݅	is ܳ௜ 2,⁄  and it is required that the 
average number of units of individual items held together in the inventory should not exceed the 
pre-specified number, ܯ. The problem is to minimize the total variable inventory cost subject to 
the limitation of total average inventory level of items. Thus, 

Let the Lagrange function be: ܮ(ܳ௜ , ߣ + TVC = (ߣ ቂଵ
ଶ
∑ ܳ௜௡
௜ୀଵ  ቃ    (12)ܯ−

= ∑ ቂ஽೔
ொ೔
௢௜ܥ + 	ொ೔

ଶ
௛௜ቃ௡ܥ

௜ୀ଴ + ߣ	 ቂଵ
ଶ
∑ ܳ௜௡
௜ୀଵ  ቃܯ−

The necessary condition for L to be minimum with respect to ܳ௜ is: 

డ௅
డொ೔

  = డ
డொ೔

  ቈ∑ ቂ஽೔
ொ೔
௢௜ܥ + 	ொ೔

ଶ
௛௜ቃ௡ܥ

௜ୀ଴ + ߣ	 ቂଵ
ଶ
∑ ܳ௜௡
௜ୀ଴  ቃ቉ = 0ܯ−

 =   -	஽೔஼೚೔
ொ೔
మ 	 +  ஼೓೔

ଶ
 +  ఒ

2
   = 0        

݅ܳ + ݅݋ܥ݅ܦ2-
 0 = [ߣ + ௛௜ܥ ]2

ܳ௜ଶ  = 			 ଶ஽೔஼೚
஼೓೔	ା	ఒ

 

ܳ௜∗ = ටଶ஽೔஼೚೔
஼೓೔ାఒ

 ;   ݅ = 1,2, … , ݊                                  (13)                           

Also, the necessary condition for L to be minimum with respect to ߣ is: 
డ௅
డఒ

  =  ଵ
ଶ
∑ ܳ௜௡
௜ୀଵ  0 =  ܯ−

ଵ
ଶ
∑ ܳ௜௡
௜ୀଵ = ߣ since   ;ܯ		 ≥ 0           (14) 

 

4. Optimization of TVC subject to order quantity constraint: 

    Min TVC =	∑ ቂ஽೔
ொ೔
௢௜ܥ + 	ொ೔

ଶ
௛௜ቃ௡ܥ

௜ୀ଴  
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   Subject to:  ∑ ஻೔
ொ೔

௡
௜ୀ଴ 				≤     ܣ

Number of orders is very important in inventory as it eliminates the existence of shortage and 
excess. This additional constraint helps us to determine the minimum number of monthly orders 
where shortages is zero. For instance, a TVC was formulated in [25] by incorporating purchase 
with shortage and production with shortage. Contrary, our aim is to obtain the number of 
inventory orders that should be considered. This number of orders constraint will help us 
determine how many times or batches should items be ordered so as to minimize cost. The 
required EOQ model when the constant number of orders is active is obtained as follows: 

Let the Lagrange function be: ܮ(ܳ௜ , ߣ +TVC = (ߣ ቂ∑ ஻೔
ொ೔

௡
௜ୀ଴ 			−      (15)			ቃܣ

= ஼೚೔஽೔
ொ೔

+ 	஼೓೔(ொ೔ିௌ)మ

ଶொ೔
+ ௜ܲ

ௌమ

ଶொ೔
+ ߣ	 ቂ∑ ஻೔

ொ೔
௡
௜ୀ଴ 			−  ቃܣ

The necessary condition for L to be minimum with respect to ܳ௜ is: 
డ௅
డொ೔

   = డ
డொ೔

 ቂ− ஼೚೔஽೔
ொ೔మ

+ 	஼೓೔
ଶ
	− ߣ	 ஻೔

ொ೔మ
ቃ 	= 0, ݏ = 0 

௜ܦ௢௜ܥ	− + 	ொ೔
మ஼೓೔
ଶ

௜ܤߣ	−  	= 0 

௜ܦ௢௜ܥ2	− + 	ܳ௜ଶܥ௛௜ −	2ܤߣ௜ = 0 

ܳ௜ଶܥ௛௜ = 2ܥ௢௜ܦ௜+	2ܤߣ௜ 

ܳ௜ଶ =   ଶ஼೚೔஽೔ା	ଶఒ஻೔
஼೓೔

 

ܳ௜∗= ටଶ஼೚೔஽೔ା	ଶఒ஻೔
஼೓೔

 ;      ݅ = 1,2, … ,݊         (16) 

Also, the necessary condition for L to be minimum with respect to ߣ is: 
డ௅
డఒ

= ∑ ஻೔
ொ೔

௡
௜ୀ଴ 			− ܣ = 0	                                                                                                         

∑ ஻೔
஽ഥ೔

௡
௜ୀ଴ 		= where ܳ௜)     			ܣ ߣ ഥ௜);   sinceܦ 	≈ ≥ 0                            (17)                     

2.2 Probability distribution of demand rate of items 

In reality, demand will vary from time to time. Thus, probabilistic inventory model will 

incorporate the variation of demand and uncertain lead time. In this case, demand of an item is 

not known to be deterministic but are considered variables. Hence, the need to obtain the 

probability distributions for the demand of the multi-item. The following cases were considered 

after necessary preliminary analysis: 
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1. When Demand of item is assumed to follow normal distribution. 

2. When demand of item is assumed to follow Weibull distribution. 

3. When demand of item is assumed to follow lognormal distribution. 

2.2.1 Probability inventory model when demand follows a normal distribution 

The probability distribution of the demand of the products were not known and were assumed 

to be normally distributed with the density function: 

஽݂(D, ,ߤ	ߪଶ) = ଵ
ఙ√ଶగ

݁
(ವషഋ)మ

మ഑మ  ; D ≥ 0, ߪ > 0                                 (18)                                   

Where D is the demand (random variable), µ and ߪଶ	are mean and variance of the normal 

distribution. 

Estimation of parameters of normal distribution for quantity demand using Maximum 

Likelihood method 

Let ߤ)ܮ, ;ଶߪ ,ଶܦ,ଵܦ	 … ,ߤ)݂	ܮ	)௡) and lnܦ	 ;ଶߪ ,ଶܦ,ଵܦ	 …  ௡) be the likelihood and loglikelihoodܦ	

functions of the normal distribution.                                                                          

By substituting (18) in the loglikelihood function, we have: 

ln∏ ቂ(2ߪߨଶ)ି
భ
మ	exp	(− ଵ

ଶఙమ
௜ܦ) ቃ௡		ଶ)(ߤ	−

௜ୀଵ  = ln ቂ(2ߪߨଶ)ି
೙
మ 	exp	(− ଵ

ଶఙమ
∑ ௜ܦ) ௡	ଶ)(ߤ	−
௜ୀଵ 	ቃ				  

 ln(2ߪߨଶ)ି
೙
మ 	− ଵ

ଶఙమ
∑ ௜ܦ) ଶ(ߤ	− =௡
௜ୀଵ  − ௡

ଶ
	ln(2ߪߨଶ) −	 ଵ

ଶఙమ
∑ ௜ܦ) ௡	ଶ(ߤ	−
௜ୀଵ         

By minimizing the loglikelihood function with respect to ߤ, we have:                                                      

డࡸ(࣌,ࣆ૛;	ࡰ૚,ࡰ૛,…	࢔ࡰ)	

డߤ
=

1

2ߪ ∑ ݅ܦ) ݊	2(ߤ	−
݅=1 = 0 

   ∑ ௜ܦ − ௡	ߤ݊	
௜ୀଵ 		= 0 

 ∴ ߤ̂ = 	 ଵ
௡
∑ ௜௡ܦ
௜ୀଵ             (19) 

Also, by minimizing the loglikelihood function with respect to ߪଶ, we have: 

డ௟௡ࡸ(࣌,ࣆ૛;	ࡰ૚,ࡰ૛,…	࢔ࡰ)	

డ࣌૛
 = − ௡

ଶ
( ଶగ
ଶగ࣌૛

) + ଵ
ଶ(࣌૛)మ

∑ ݅ܦ) ݊	2(ߤ	−
݅=1 = 0 

− ଶగ௡
ସగ࣌૛

 + ଵ
ଶ(࣌૛)మ

∑ ݅ܦ) ݊	2(ߤ	−
݅=1 = − ௡

ଶ࣌૛
 + ଵ

ଶ(࣌૛)మ
∑ ݅ܦ) ݊	2(ߤ	−
݅=1 = 0                   
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−݊ + ଵ
૛࣌
∑ ௜ܦ) ଶ௡(ߤ	−
௜ୀଵ ૛ + ଵ࣌− =		

࢔
∑ ௜ܦ) ଶ௡(ߤ	−
௜ୀଵ 				= 0  

∴ ො2   =   ଵߪ
࢔
∑ ௜ܦ) ଶ௡(ߤ	−
௜ୀଵ 		                                  (20)                                            

2.2.2 Probability inventory model for demand with lognormal distribution 

A continuous random variable D is said to have a lognormal distribution with mean ߤ and 

variance ߪଶ if the density function is given by: 

஽݂(ln(ܦ) , ଶ) = ଵߪ,ߤ
ఙ√ଶగ

	݁
ష(ౢ౤(ವ)షഋ)మ

మ഑మ ௜ܦ  ;   	≥ ߪ,0 > 0                                   (21)                                                       

Where D is the quantity demand (random variable), ߤ	and ߪଶ are the mean and variance of the 

quantity demand. 

Parameters Estimation of lognormal distribution 

We use the maximum likelihood method of parameter estimation as follows: 

Let ߤ)ܮ, ;ଶߪ 	ln(ܦଵ), ln(ܦଶ), … 	ln(ܦ௡)) and lnL[ߤ, ;ଶߪ 	 ln(ܦଵ), ln(ܦଶ), … 	ln(ܦ௡)] be the 

likelihood and log likelihood functions.                                                                           

By substituting (21) in the loglikelihood function, we have: 

ln ቂ(2ߪߨଶ)ି
೙
మ 	exp	(− ଵ

ଶఙమ
∑ (lnܦ௜ ௡	ଶ)(ߤ	−
௜ୀଵ 	ቃ =	 ln(2ߪߨଶ)ି

೙
మ 	− ଵ

ଶఙమ
∑ (lnܦ௜ ௡	ଶ(ߤ	−
௜ୀଵ   

= − ௡
ଶ
	ln(2ߪߨଶ) −	 ଵ

ଶఙమ
∑ (lnܦ௜ ௡	ଶ(ߤ	−
௜ୀଵ       

By minimizing the loglikelihood function with respect to ߤ, we have:   

డࡸ(࣌,ࣆ૛;	ࡰ૚,ࡰ૛,…	࢔ࡰ)	

డߤ
=

1

2ߪ ∑ (ln݅ܦ ݊	2(ߤ	−
݅=1 = 0 

  ∑ lnܦ௜ − ௡	ߤ݊
௜ୀଵ = 0 

   ∴ ߤ̂ = ଵ
௡
∑ lnܦ௜௡
௜ୀଵ                  (22) 

Also by minimizing the loglikelihood function with respect to ߪଶ, we have:                                                                              
   

డ࣌,ࣆ)ࡸ૛;	ܖܔ(ࡰ૚),ܖܔ(ࡰ૛),… 	 	((࢔ࡰ)ܖܔ

డ࣌૛
 = − ௡

ଶ
( ଶగ
ଶగ࣌૛

) + ଵ
ଶ(࣌૛)మ

∑ ݅ܦ)݈݊ ݊	2(ߤ	−
݅=1 = 0 

 − ଶగ௡
ସగ࣌૛

 + ଵ
ଶ(࣌૛)మ

∑ [ln(݅ܦ)
݊
݅=1 − − =2[ߤ	 ௡

ଶ࣌૛
 + ଵ

ଶ(࣌૛)మ
∑ [ln(݅ܦ)
݊
݅=1 −  0 =		2[ߤ	
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−݊ + ଵ
૛࣌
∑ [ln(݅ܦ)
݊
݅=1 − ૛ + ଵ࣌− =		2[ߤ	

࢔
∑ [ln(ܦ௜)௡
௜ୀଵ −   = 0				ଶ[ߤ	

∴ ෝ૛ =   ଵ࣌
࢔
∑ [ln(ܦ௜)௡
௜ୀଵ −                                                                                (23)		ଶ[ߤ	

2.2.3 Probability inventory model for demand with Weibull distribution 

The probability density function of a two parameter Weibull random variable, D is; 

ቐ = (ߚ,ߙ,ܦ)݂ ቀఈ
ఉ
ቁ ݁ିቂ	ఈିଵ(ܦ)

ವഥ
ഁቃ
ഀ

;					஽வ଴

	ܦ		݂݅																										,0 ≤ 0
						                                                    (24)          

Estimation of parameters 

By use of the least squares method of estimation we obtained the following density and 
distribution functions respectively: 

(ߚ,ߙ,ܦ)݂ = ቀఈ
ఉ
ቁܦఈିଵ 	∏ (஽

ఉ
)ఈିଵ௡

௜ୀଵ 	݁∑ ቂವ
ഥ
ഁቃ
ഀ

೙
೔సభ   

(ߚ,ߙ,ܦ)ܨ = 1− 	݁ቂ
ವഥ
ഁቃ
ഀ

        (25) 

The log function of the distribution function is: 

ln ቂ ଵ
ଵିி(஽)

ቃ = ߙ lnܦ −  (26)              ߚ݈݊ߙ

Let ܦ௜  be a random sample of the demand and (ܦ)ܨ is estimated by the median rank method 
and replaced as follows: 

(ܦ)ܨ = ௜ି଴.ଷ
௡ା଴.ସ

,௜ܦ) ,  ݅ = 1,2, … , ଵܦ)	݀݊ܽ(݊ < ଶܦ < ⋯ <  	(௡ܦ

Eq (26) becomes; 

ܻ = ܺߙ +  (27)           ߣ

Where ܻ = ln[−݈݊(1−          [((ܦ)ܨ

 ௜ܺ =  ܦ݈݊

and     ߣ =            ߚ݈݊ߙ−

Estimates of ߙ,  :can be obtained in (27) as 	ߚ	݀݊ܽ	ߣ

ෝ	ߙ =
ቂ∑ ܻܺ − 1

݊∑ ܺ௡
௜ୀଵ

௡
௜ୀଵ 		∑ ܻ௡

௜ୀଵ ቃ

∑ ܺଶ௡
௜ୀଵ − 1

݊ (∑ ܺ௡
௜ୀଵ )ଶ

 



14 
 

መߣ =
1
݊෍ܻ −

ߙ
݊෍ܺ

௡

௜ୀଵ

௡

௜ୀଵ

 

መߣ = തܻ − ොߙ തܺ 

መߚ = ݁ି
ఒ
ఈ 

The mean of Weibull distribution is given by; 

߁	ߚ = [ܦ]ܧ ቀߙ + ଵ
ఈ
ቁ	              (28) 

 

2.3 Chi-square goodness-of-fit test 

The chi-square goodness-of-fit test would be used to determine how well the sample data fits a 

distribution from a population. It establishes the discrepancy between the observed values and 

expected values. 

The test statistic is given by: 

߯ଶ = ∑ (ை೔ೕି	ா೔ೕ)మ

ா೔ೕ
௡
௜ୀଵ   ~		߯ఈ;௡ିଵ

ଶ        (29) 

Where ܱ௜௝ are the observed value in cell (݅, ݆) 

௜௝ܧ  are the expected value in cell (݅, ݆) 

n is total number of each item 

݊ = 	௜௝ܧ ∫ ௕ݔ݀(ݔ)݂
௔ (ܾ)ܨ]݊ =  −  (30)       [(ܽ)ܨ

Where ܨ(ܽ) = 	 ∫ ௔ݔ݀(ݔ)݂
ିஶ  

Or ܧ௜௝	 = ൫ܨൣ݊ ௜ܻ௝൯ − )ܨ ௜ܻ)൧	                                                                                                 

where ܨ( ௜ܻ௝) = 1 - ݁ିቂ
ವ
ಳቃ
ഀ

	ܦ ; > 0        (31) 

 

3. Analysis and result 

3.1 Estimation of demand rate of multi-item 
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Data on monthly demand rate were obtained from Great Possibilizer Ltd. on selected items: 

Cowbell milk, Milo, Cerelac, SMA and Golden Morn. The demand rate of these items were 

modeled as appropriate probability distributions using chi-square goodness-of-fit test. Eqs (19), 

(22) and (28) were used to obtain the estimated average demand of items as the location 

parameters of normal distribution; ̂ߤெ=536.92 and ̂ߤௌெ஺=10.5 for Milo and SMA respectively, 

lognormal distribution; ̂ߤ௖ = 2.1926 and ̂ீߤெ = 5.31 for Cerelac and Golden Morn respectively 

while Weibull probability distributions was used to modeled the demand rate of cowbell milk 

with mean; ̂ߤ஼஻ = 491.65.  Easy fit software (5.6) was also used to obtain the mean of the 

appropriate probability distributions to validate earlier results in Equations (19), (22) and (28) as 

shown in Table 1.  

Table 1: Summary of probability modeling, goodness-of-fit test with rank and mean 

estimate (average demand) for each item 

Item  Probability 
distributions 

Chi-square ranks  Average demand 

Cowbell Weibull 1 491.55 

Milo Normal 8 536.92 

SMA Normal 6 10.5 

Cerelac  Lognormal 3 2.1926 

Golden morn Lognormal 5 5.3103 

 

The calculated estimates of the parameters in eqs (19), (22) and (28) were equal or very close to 

the estimates obtained for same parameters with Easyfit (6.5) software. The chi-square rank of 

the probability functions in column 3 of Table 1 shows the goodness-of-fit levels of the 

probability distribution of the demand of items. For instance, Cowbell was found to follow 

Weibull distribution with chi-square goodness-of-fit test of rank 1with average demand of 

491.65. Milo was found to follow normal distribution with chi-square goodness-of-fit test of rank 

8 with average demand of 536.92. SMA was found to follow normal distribution with chi-square 

goodness-of-fit test of rank 6 with average demand of 10.5, while Cerelac was found to follow 

lognormal distribution with chi-square goodness-of-fit test of rank 3 with average demand of 

2.1926 and Golden Morn was found to follow lognormal distribution with chi-square goodness-

of-fit test of rank 5 with average demand of 5.3103. It was noted that probability distribution 
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with ranks 1 to 7 for Milo, ranks 1 to 5 for SMA, ranks 1 and 2 for Cerelac and ranks 1 to 4 for 

Golden Morn were found to be extreme distributions which do not represent demand curve of the 

items and were therefore discarded. Hence, the estimates obtained with the help of the software 

in Table 1 would be used for further analysis in this work for calculation accuracy and precision 

purposes. 

3.2 Determination of optimal EOQ for selected items subject to the constraints 

The EOQ models of section 2.1 were considered and appropriate costs and demand data obtained 

from the company were applied to eqs (7), (10), (12) and (14). The desired value of the 

nonnegative Lagrange constant (λ) was obtained for each selected item by the trial and error 

method in [24]. Table 2 provides the calculated EOQ subject to each constraint for λ = 0 and 1. 

For instance, the EOQ values for Cowbell milk when λ = 0 under warehouse, capital investment, 

average inventory level and number of orders constraints are the same and equal to 38. While the 

EOQ values for the same Cowbell milk when λ=1 under the same set of constraints: warehouse, 

capital investment, average inventory level and number of orders are respectively 37, 4, 38 and 

39. Similarly, the EOQ values for Milo, SMA, Cerelac and Golden Morn when λ = 0 and 1 under 

the same set of constraints were obtained. 

Table 2. EOQ values under each constraints for results for λ = 0 and 1 

                               EOQ values subject to constraint 

Item λ  Warehouse Capital 

Investment 

Avg. inventory level No. of Orders 

Cowbell 0 38 38 38 38 

1 37 4 38 39 

Milo 0 38 38 38 38 

1 38 4 38 42 

SMA 0 8 8 8 8 

1 8 0.8 8 8 

Cerelac 0 7 7 7 7 

1 7 0.6 6 8 

Golden Morn 0 4 4 4 4 
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1 4 0.4 4 10 

 

Table 2 shows that the calculated values of EOQ for selected items under each constraint for λ= 

1 is consistent for each item and is considered optimal in the sense of minimization except for 

number of orders constraint which requires the maximum number of orders. These values are the 

acceptable results and would be considered for further analysis in this work.  

 

3.3 Optimal capacity/level of constraints for the selected items  

The optimal EOQ values for individual items under each constraint in Table 2 were used to 

obtain the overall capacity of each constraint for the five selected items as follows:   

(a) Available warehouse space constraint capacity 

The warehouse space requirement is obtained from eq (8) as: 

∑ ௜݂
௡
௜ୀଵ ܳ௜  =  W                                                          

෍ ௜݂	

ହ

௜ୀଵ

ܳ௜∗ = (1.85)(37) + (0.95)(38) + 	(0.89)(8) + (0.17)(7) + (2.67)(4) = 124 

The optimal storage capacity for the considered items (cowbell, milo, SMA, Cerelac and Golden 

Morn is 124sq.ft out of a total space of 650 sq.ft. 

(b) Investment level capacity constraint 

The investment level for the selected items is obtained from eq (11) as: 

      ∑ ௜௡ܥ
௜ୀଵ ܳ௜=ܨ                                   

෍ܥ௜	

ହ

௜ୀଵ

ܳ௜∗ = 9840(4) + 	7422.41(4) + 3240.05(0.8) + 	1386.37(0.6) + 10495.20(0.4)

= 76,671 

The total investment by the company for all products over the period was put at 310,000 naira. 

However, the calculated optimal amount of investment for the five items under consideration is 

obtained as 76,671 naira. 
 

(c) Average inventory level capacity constraint  

The average inventory level is obtained from eq (14) as: 

 	 ଵ
ଶ
∑ ܳ௜	ହ
௜ୀଵ =   ܯ
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=	ଵ
ଶ

{38 + 38 + 8 + 6 + 4} =  ℎݐ݊݋݉	ݎ݁݌	ݏݐ݅݊ݑ	94

Hence, the optimal stock level of the five items is 94 units per month. 

(d) Numbers of orders for each item per month constraint  

Recall Eq (17): ∑ ஻೔
஽ഢതതത

ହ
௜ୀଵ =  ܣ

The values of A which denotes maximum value of order for the respective items were obtained 

from eq (17) as follows: 

௖௢௪௕௘௟ܣ =
17835
491.55 = 36 

௠௜௟௢ܣ =
19329
536.92 = 36 

ௌெ஺ܣ =
378
10.5 = 36 

௖௘௥௘௟௔௖ܣ =
79

2.1926 = 36 

௠௢௥௡	௢௟ௗ௘௡ீܣ =
191
5.31 = 36 

The results of the maximum number of order per month for each item, A=36 is a constant and 

when divided by the period in months (36) for the three years under consideration yield the value 

of 1. This implies a monthly cycle order of 1 for each item. 

 
4. Discussion 

The demand rate of the selected items follow different probability distributions. The chi-square 

goodness-of-fit test was used to identify the appropriate probability distributions for demand rate 

of the items. Both the Easyfit software (5.6) and manual computations were used to perform the 

goodness-of-fit test of these items as well as the parameters estimates of the distributions and 

results from both approaches were comparable. However, the set of results from Easyfit software 

was used for purposes of accuracy and precision, namely: Cowbell was found to follow Weibull 

distribution with chi-square goodness-of-fit test of rank 1, having shape parameter (ߙ௖௪ =
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1.8838), scale parameter (ߚ௖௪ = 553.9) and mean demand E(CW) = 491.65. Milo was found to 

follow normal distribution with chi-square goodness-of-fit test of rank 8, having mean (ߤெ) = 

536.92 and standard deviation (ߪெ) = 268.28. Similarly, SMA was found to follow normal 

distribution with chi-square goodness-of-fit test of rank 6 having mean (ߤெ) = 10.5 and standard 

deviation (ߪெ) = 5.207, while Cerelac was found to follow lognormal distribution with chi-

square goodness-of-fit test of rank 3 having mean (ߤெ) = 2.1926 and standard deviation (ߪெ) = 

0.61301 and golden morn was also found to follow lognormal distribution with chi-square 

goodness-of-fit test of rank 5, having mean (ߤெ) = 5.3103 and standard deviation (ߪெ) = 

0.66794. It was noted that probability distribution with ranks 1 to 7 for Milo, ranks 1 to 5 for 

SMA, ranks 1 and 2 for Cerelac and ranks 1 to 4 for Golden Morn were found to be extreme 

distributions that do not represent demand curve and were therefore discarded. These results are 

in line with [4], [15], [21] and [23] which characterized the demand rate of items and the stock 

out probabilities for single inventory control model with different probability distributions such 

as normal, uniform and Weibull.  

The estimates of the location parameters of the appropriate probability distribution for the 

demand of each item was used as the mean demand rate to calculate the respective EOQ values. 

Also, the resulting EOQs were used to obtain the optimal level/capacity (for the selected items) 

of warehouse, investment, average inventory level and the number of orders constraints. The 

capacity of the warehouse space constraint for the selected items has an optimal storage capacity 

of 124sq.ft with a remainder of 526sq.ft for other items in the warehouse not considered in this 

study. More so, the investment level constraint which has the sum of 76,671 naira signifies that 

the optimal amount for investment of the selected five items is 76,671 naira while the remainder 

of 283,328.48 naira is meant for investment in other items not considered in this work. Also, the 

average inventory level constraint has total level (capacity) for the selected five items to be 94 

units per month and the constraint of number of orders indicates that optimal number of monthly 

order is 1 so as to avoid shortage of items in stock. 

 

5. Conclusion 

The results obtained in this work show that the demand rate of items follow different probability 

distributions and the average demand rate of each item obtained as the location parameter 
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estimate of the respective probability distribution provides a dynamic and realistic description of 

the behavior and value of the demand rate over a period of time. These estimated demand values 

were used to determine the dynamic optimal EOQ models for each item under consideration. It 

was also possible to determine the unknown specific values of the level/capacity of each 

constraint for the selected items as a fraction of the total capacity. This is against the use of the 

total capacity of each constraint for all items in stock as in [24]. Therefore, the use of probability 

distribution to model demand rates of items for dynamic inventory control models as against the 

use of simple averages in deterministic models is recommended as demand is not constant but a 

variable over time.  
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