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ABSTRACT 

One of the concerns in the field of statistics is the presence of missing data, which leads to bias 
in parameter estimation and inaccurate results. However, the multiple imputation procedure is a 
remedy for handling missing data. This study looked at the best multiple imputation methods 
used to handle mixed variable datasets with different sample sizes and variability along with 
different levels of missingness. The study employed the predictive mean matching, classification 
and regression trees, and the random forest imputation methods. For each dataset, the multiple 
regression parameter estimates for the complete datasets were compared to the multiple 
regression parameter estimates found with the imputed dataset. The results showed that the 
random forest imputation method was the best for mostly a sample of 500 irrespective of the 
variability. The classification and regression tree imputation methods worked best mostly on 
sample of 30 irrespective of the variability. 
 
Key words: predictive mean matching, classification and regression tree, random forest, 
multiple imputation chained equation. 

1. INTRODUCTION 
 
Missing data is considered as an unstored data value for a variable in observation of interest [1].  
As complete data sets are needed to help firms and institutions to produce more accurate and 
precise results, the presence of missing data rather leads to inaccurate results, bias in 
parameter estimation and reduction in statistical power. Missing data invariably give rise to 
reduced sample size and thus, leads to a less precise confidence interval and reduced power in 
the tests of significance. All these pitfalls lead to incorrect conclusions and invalid 
recommendations. 
      The study assesses the best multiple imputations by chain equation (MICE) procedure for 
handling missing data for large and small mixed data sets with different variability and with 
different percentage levels of missingness. One of the fundamental assumptions made was that 
the missing data were missing at random.  

2. TYPES OF MISSING DATA 
 
      While the reason for missing data is difficult to establish in a survey with some reasons 
being the unwillingness on the part of respondents to answer private questions or the 
forgetfulness to answer certain questions, it is still imperative to carefully examine the pattern of 
missingness in data to set out the appropriate mechanism to handle such missing data.   
According to Rubin [5]; Little and Rubin [28]; Diggle et al. [29]; Diggle and Kenward [30], there 
are three types of missing data: missing completely at random (MCAR), missing at random 
(MAR), and missing not at random (MNAR).  
      When the missingness of data is a result of observed and unobserved (missing) data, then 
the data is missing completely at random (MCAR) [3]. In this case, the probability of 
missingness is independent of the observed and unobserved data [4]. With the missing ܻ	value 
(Ymiss) and observed ܻ value (Yobs) the probability of missing Y value is given as ܲ	(ܴ|∅)  
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where	ܴ is an indicator function with 0 representing a missing value and 1 as an observed 
value; and ∅ describes the relation between the data and ܴ. Data that is completely missing at 
random is considered a simple random sample. To test for MCAR assumption, we separate the 
data into two categories and then, test the difference between the two groups using a two-
sample t-test. If there is a significant difference between the two groups, the MCAR assumption 
is satisfied. 
      When missing data is due to observed data but not unobserved data, then the data is 
missing at random (MAR) [5, 6]. The missing data is conditional on the observed variable. We 
can denote this as P (Ymiss |Y, X) = P (Ymiss |X) where Y is considered as a missing value, but X 
is always observed. If a data is considered MAR, then some complete case analyses are valid 
under weaker assumption than MCAR. When missing data is ignorable (any information about 
the missing data is not included when dealing with the missing data) and the missing data does 
not need to be modeled in the analysis of the dataset, then the MAR assumption is satisfied. 
However, when the missing data is non-ignorable, then the modeling of the missing data leads 
to accurate parameter estimation. As of now, the MAR mechanism cannot be tested. When 
dealing with data that are completely missing at random, biased parameter estimates are 
produced and there is also a loss of statistical power.  
      When missing data is due to unobserved data but not observed data, then the data is 
missing not at random (MNAR). The probability of missingness is associated with the missing 
value itself [4]. The MNAR produces small and biased parameter estimates. Data which is 
MNAR is non-ignorable since information of the missing data is required and most models are 
also not precise with this form of missingness. The probability distribution of MNAR is given as 
P (R | Yobs; Ymis; ∅), where the missing ܻ	value is Ymiss; the observed ܻ value is Yobs ; ܴ 
represents the missing data indicator and ∅ describes the relation between the data and ܴ.  
MNAR data cannot be tested. 

3. METHODS OF IMPUTATION 
 
      Several methods have been proposed on how to handle missing data and can be broken 
down into two categories: traditional and modern methods. The traditional methods are 
comprised of the deletion methods (such as pairwise and listwise deletion) and the single 
imputation methods (such as arithmetic mean imputation, regression imputation, and stochastic 
regression imputation).  The modern methods of handling missing data are further broken into 
two approaches: joint modeling method and multiple imputation of chained equations (MICE). 
 
3.1.  Traditional Methods 

 
      The two most common traditional methods of handling missing data are the listwise deletion 
and the pairwise deletion. With the listwise deletion, also known as the complete case analysis 
(CCA), when at least one value is missing from the entire observation, then the entire 
observation is dropped from the analysis [7] which is the main shortfall. With this method, there 
is an assumption that a random sample chosen from the originally targeted sample is collected 
to represent the complete case, [7] which is not the case in real data since there is often a 
reason why a data value might be missing. 
      The pairwise deletion method involves the removing cases on an analysis-by-analysis basis 
which minimizes the loss that results from the listwise deletion [8]. In pairwise deletion, variables 
with missing information are deleted in a specific analysis. Else, variables with complete 
information have their cases included in the analysis. According to Graham (2009), biased 
parameter estimates are produced because of the diverse sample sizes used in the pairwise 
deletion method. One of the main shortfalls of the two deletion methods is that the data are 
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missing completely at random. However, the MCAR data can lead to reduced sample size, loss 
of statistical power, and then generate biased parameter estimates [9] and thus, the deletion 
methods are not ideal in most situations.  
      The single imputation methods are another traditional way of handling missing data. With 
the arithmetic mean imputation, all cases of missing values for a particular variable are replaced 
with the computed arithmetic mean for that particular variable. Since the mean is biased 
towards outliers, the arithmetic mean method can affect the parameter estimate and variability 
of the data.  
With the regression imputation method, a regression model predicts the missing value, and the 
estimated response value replaces the missing data. The regression imputation method 
produces biased parameter estimates even though it is a better method as compared to the 
arithmetic mean method.  
      With the stochastic regression imputation, which is a way to improve regression imputation, 
accounts from the variability in the predicted incomplete values. This method adds a random 
error to the predicted value from the regression and able to reproduce the appropriate 
correlation between the missing value and observed terms. The shortfall of the stochastic 
regression imputation is that the complexity that arises from the several missing data in 
multivariate data since each missing data require a unique regression equation. With the 
response pattern imputation, this method can generate relatively accurate parameter estimates 
with MCAR data and bias estimates when dealing with MAR data [11]. 
      The most obvious drawback of single imputation is the main assumption of considering the 
true value as the imputed value. This drawback underestimates of the variance, thus affects 
statistical tests and confidence interval [27]. 
 
3.2.   Modern Methods 
 
      The shortcomings associated with the traditional methods of handling missing data led to 
the adoption and implementation of modern methods to handle missing data with high accuracy.  
 
3.2.1.  Joint Modeling 
 
      The joint modeling (JM) method of handling missing data is most appropriately used when 
dealing with time-to-event data (data which occur when attention is fixated on the time elapsing 
prior to experiencing an event) and longitudinal data since the JM gives an efficient estimate of 
the treatment effect hence decreases the bias in the treatment effect [12]. The time-to-event 
component and longitudinal component serve as the two components of the joint modeling 
method. JM comprises of a linear model with a random effect [12]. 
      The model is built on a multivariate distribution. Mostly, the JM model is based commonly on 
the multivariate normal distribution, which is used to draw missing data simultaneously from all 
incomplete variables [14]. With the JM method, the missing data are partitioned into groups of 
identical patterns and the joint model, which is common to all the observations are used to 
impute the missing entries with each group of the identical missing data pattern. For more 
information on JM, see [35, 36]. 
 
3.2.2.   Multiple Imputation of Chained Equation   
 
      Multiple imputation of chained equations (MICE), also known as fully conditional 
specification (FCS) is used for the computation of multiple imputations instead of a single 
imputation. The multiple imputation method resolves the impreciseness and uncertainties in 
single imputation. When the cause for the missing value is unknown, then the multiple 
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imputation method aims to provide valid inference [27]. MICE is required when a multivariate 
distribution is inappropriate, unknown, or both unlike the JM method that requires the 
assumption of a known multivariate distribution [16]. Unlike the JM, the MICE method imputes 
variables one-by-one from series of the univariate conditional distribution. One main advantage 
of the MICE approach is that the method is flexible to the type of data. It can impute data for 
binary, categorical, and quantitative variables including data sets with mixed type of data. 
      The first stage of the multiple imputation chained equation (MICE) process, also termed the 
imputation stage, involves creating a complete data set by substituting the missing values with 
estimated values using a multiple imputation (MI) method based on the type of variable(s). The 
second stage, called the analysis stage, involves analyzing the complete data in the first stage 
with a statistical method of interest. The pooling stage, which is the final stage, generates single 
point estimates for the missing observations by merging the analyzed results in the second 
stage.   

4.  MI METHODS FOR MIXED DATA 
 
      Data containing both quantitative and categorical variable (mixed data) that has missing 
values can be imputed using several different methods. The methods focused in this paper 
includes classification and regression trees, predictive mean matching, and random forest.  
 
4.1.  Classification and Regression Trees 
 
      Classification and regression trees (CART), similarly identified as decision trees, are used to 
impute missing values. For the classification tree, the predicted response is the class that 
contains the data while in the regression tree, the predicted response is a real number.  The 
implementation of the imputation method in CART is done by first using the observed data to fit 
the classification and regression tree. Then the prediction of the terminal node of the fitted tree 
where each missing observation finally ends up is determined. Finally, the observed value which 
is derived from a random draw for the elements in the node is regarded as the imputation [23].    
 
4.2.   Predictive Mean Matching 
 
      The predicted mean matching (PMM) method takes values from observed data to impute 
missing values which preserves the distribution of the observed data in the missing, thus 
enables the PMM method to generate realistic values [2]. With PMM, corresponding values from 
the complete case that are most similar to the missing values replace these missing values [18]. 
Even when the structural part of the imputation is incorrect, the PMM preserves the non-linear 
relation which serves as an advantage for using the PMM method [16]. When the assumption is 
normality is breached, the PMM is considered more suitable than regression even though the 
PMM is alike to the regression approach [24]. The imputed values are mostly realistic and a 
good representation of the possible missing value. On the other hand, the PMM method does 
not work properly on small sample sizes because the PMM does not emphasize on the between 
imputation variability with small number of predictors [16]. 
       
4.3.  Random Forest Approaches 
 
      The random forest is considered as the collection of several decision trees fit with training 
data. The random forest is used to impute missing values for continuous variables by drawing 
randomly from an independent normal distribution, centered on means predicted by the random 
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forest. On the other hand, for categorical variables, the random forest predicts missing values 
trained on observed values.  
 
4.3.1.  Proximity Imputation  
 
      With the proximity imputation method, the random forest model can be fit after some method 
of imputing the missing values has been implemented and this process is termed the pre-
imputing of data. The median of the non-missing value is imputed for the quantitative missing 
values whereas the most occurring non-missing value is imputed for categorical missing values 
[25]. This is termed as strawman imputation. An ݊ × ݊ proximity matrix (a square matrix that 
contains the distance taken pairwise between the elements of the matrix) used to detect 
structures in the data and symmetry is generated. For each element, ݅	and  ݆ that share a 
common terminal, the  (݅, ݆) entry denotes the fraction of tress. One’s expectation is to have the 
same terminal nodes having similar observations and different terminal nodes having dissimilar 
observations. The original missing values in the data set are imputed using the proximity matrix 
[25]. 
For mixed data, the quantitative variable is imputed using the weighted averages of the non-
missing observations, with the weights serving as the proximities while the categorical variable 
is imputed using the category with the largest mean proximity [25]. A new random forest is 
generated, and the process is iterated a few times [33]. 
 
4.3.2.  On-the-fly Imputation  
 
      Contrary to the proximity imputation, data is imputed simultaneously while growing the forest 
when employing the on-the-fly imputation (OTF) [25]. One of the shortcomings of the proximity 
imputation which includes variable importance (a measure of how much including or removing a 
variable affect the prediction accuracy) and bias estimates is addressed using one-the-fly 
imputation. With OTF, observed data is used to calculate the split statistics and imputed values 
reset to missing after each split. When data is missing, a random value from the in-bag 
observed data is used to impute the value. If the terminal node is reached, the out-of-bag (OOB) 
observed terminal node data from all the trees is used to impute the missing values. For 
quantitative values, the mean observed value is used while the highest observed value is used 
for categorical values. There is a random selection of the variable used to split each node. 
There is an iteration of the process where in the first iteration, the estimates used are OOB. 
Then in-bag estimates are used for additional iteration since there is the non-existence of the 
OOB estimates [25]. 
 
4.3.3.  missForest and mForest Imputation  
 
      The missForest is usually employed to predict missing values using a random forest trained 
on the observed values of a data matrix. Apart from its use in imputing mixed data, the 
missForest can also be used to impute complex interaction and non-linear relations [34]. 
Compared to the other imputation methods, there are prediction problems associated with the 
missForest algorithm. First imputing data by regressing each variable against the other 
variables helps in the prediction of the missing data of the response variable [25].  There could 
be slowness in computation depending on the amount of data. Considering the case of 
݊	variables, each iteration will be well fit if there are ݊ forests. The mForest is usually employed 
when handling large ݊ values that is a computationally faster form of missForest. With this 
method, ݊ variables are assigned to groups hence resulting in less forest being fit. 
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      Multivariate splitting is used to grow each forest. There is the exclusion of missing values in 
the response and the split-rule is averaged over observed responses [25]. Final missing 
response values are imputed using the prediction method. With less computation, some studies 
have concluded that the performance of the mForest and the missForest are at par.  

5.  METHODOLOGY 
 

      This section describes the data source, generation of the 6 complete datasets, analysis of 
the data, and the imputation implementation in the study.  
 
5.1   DATA SOURCE AND DESCRIPTION 

 
      The data generated for this study is modeled after the 1985 Auto Import Database. This 
data measures the price of an automobile based on the width of an automobile, engine size, 
aspiration and drivetrain (denoted as drive wheels). The data can be freely accessed on the UCI 
Machine Learning Repository at: https://archive.ics.uci.edu/ml/datasets/Automobile. 
      For this study, the response variable is the price of an automobile while the predictor 
variables were width of an automobile, engine size, aspiration and drive wheels. Width of the 
automobile and engine size are quantitative while aspiration and drive wheels are categorical. 
The aspiration is a binary variable with categorized as 4wd and fwd while drive wheel is a binary 
variable categorized as std and turbo. The entire data set contains 795 observations. The 
regression model was found to be: 

Ŷ =-68978.03 - 2178.85X1 + 2208.55X2 + 1098.56X3 + 79.85X4 
where Ŷ is the estimated price of an automobile, X1 represents aspiration, X2 represents drive 
wheels, X3 represents, and X4 represents engine size.  
 
5.1.1 Evaluating the Model 
 
      One of the vital tests conducted during model selection is the test of the significance of the 
predictors in the model 

H0: β1= β2=…= β4=0 
H1: At least one βj does not equal 0 for j=1...,4. 

The Global F-test resulted in a p-value of approximately 0 indicating that at least one predictor is 
significant in the model.  
      Since the data set is large (795 observations), the central limit theorem satisfies the 
assumption of normality. For more information on the central limit theorem, see [3] and [6].  
Figure 1 shows the residual plot for the main model and indicates assumption of constant error 
variance was met. 

 

 
Figure 1: Residual plot for main model 
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All the 4 predictors have variance inflation factor (VIF) values less than 10 as shown in Table 2, 
which signifies that there is no serious issue of multicollinearity in the best regression model.  
 
 

Table 2: VIF values for the best regression model with 4 predictors  

Variable Aspiration  Drive Wheels  Width Engine Size 
VIF Value 1.255447     1.753623     3.041604 3.089541 

 
The ratio of the PRESS statistic and SSE produces a value of 1.114822 (close to 1) which 
indicates that the regression model has a good predictive ability. 
Based on the internally studentized residual, only a few observations had the |ri| greater than 
2.5, hence there are only a few outliers in the response. Also, a few observations were flagged 
as outliers in X using the leverage value (hii) as shown in Figure 2 where many of the 
observations fell above the threshold of 0.012 computed as (2*p)/n, where p = 5 and ݊ =795. 
The Difference in Fits (DFFITS) and Cook's distance were used to check for influential outliers.  
In figure 3, we noticed lots of observations falling above or below the threshold of +/- 0.158 
computed as +/- (2*sqrt(p/n))), where p = 5 and n = 795. In Figure 4, the threshold for influential 
observation is 0.8710369 (computed as qf (0.5, p, n-p), and there were no influential 
observations detected. No action was carried out to eliminate potentially influential observation 
since the reduced model produced strong results. 
 

 
                                    Figure 2:  Index plot of hi 
 
 

  
 
Fig.3: Influential observation by dffits rule              Fig.4: Influential observation by cook's rule 
 
 
 
 
5.2.   GENERATION OF DATA 
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      An R package, SimMultiCorrData, was used to generate the dataset with a specified 
correlation matrix simultaneously.  The continuous variables (width, engine size, and price) were 
generated with Headrick’s fifth order power method transformation using the mean and variance 
from auto import dataset for each variable while preserving the correlation structure. This 
method matches the six standardized cumulants (mean, variance, skewness, standardized 
kurtosis, and standardized fifth and sixth cumulants). We assumed the skewness, standardized 
kurtosis, and the standardized fifth and sixth cumulants were zero [37]. The categorical 
variables were simulated by discretizing the standard normal variables at quantiles. These 
quantiles were found by looking at the inverse standard normal based on the probabilities of 
success for each variable (aspiration and drive wheels) as described in section 5.1. [37]. 
      A pseudo complete dataset of sample sizes of 30 and 500 was generated. For each sample 
size, a dataset with small, regular, and large variabilities was also generated. We define the 
regular variability as the same variability from the auto import dataset for each variable. The 
small variability was obtained by halving the regular while the large variability was obtained by 
doubling the regular variability from the auto import dataset. A total of 6 complete datasets were 
produced for each of the 2 sample sizes of 30 and 500 with each having small, regular, and 
large variabilities.  
 
5.3.   MODEL BUILDING FOR THE 6 COMPLETE DATASETS 
 
      Using price as the response variable with aspiration, drive wheels, width and engine size as 
the predictor variables, regression models were fitted for 9 complete datasets.  
 
5.3.1.  Model building for 30 observations. 
 
      Tables 3, 4, and 5 show the estimated parameters from the regression model along with the 
t test statistic and corresponding p-value for with small, regular, and large variability. All the 
predictors were needed in the model in the presence of other predictors except for drive wheels 
at the 5% level of significance. Based on Global F-test for the three distinct models as shown in 
table 6, the set of predictor variables were significant in predicting the price, hence we left drive 
wheels in the model for comparison of the other sample sizes used. The assumption of constant 
variance is met based on the random patterns in the residual plots for the sample size of 30 with 
small, regular and large variability, which is shown in figures 5, 6 and 7, respectively. All the VIF 
values for the predictors in the three models as indicated in table 7, 8 and 9 were less than 10, 
hence there is no serious multicollinearity problems.  
                      
Table 3: The estimated regression coefficients and p-values for data size of 30 with small       
variability. 

Regression 
Coefficient 

β̂0 β̂1 β̂2 β̂3 β̂4 

Estimate  -82853.22 -3789.19 1832.32 1195.46 144.56 
t (P-value) -2.395 (0.02) -2.980 (0.00) 1.516(0.14) 2.105(0.04) 3.960(0.00) 

 
Table 4: The estimated regression coefficients and p-values for data size of 30 with       regular 
variability. 

Regression 
Coefficient 

β̂0 β̂1 β̂2 β̂3 β̂4 

Estimate -54833.35 -3789.19 1832.32 845.32 102.22 
t (P-value) -2.232 (0.03) -2.980 (0.01) 1.516 (0.14) 2.105 (0.04) 3.960 (0.00) 
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Table 5: The estimated regression coefficients and p-values for data size of 30 with large     
variability. 

Regression 
Coefficient 

β̂0 β̂1 β̂2 β̂3 β̂4 

Estimate  -35020.31 -3789.19 1832.32 597.73 72.28 
t (P-value) -2.002 (0.06) -2.980 (0.01) 1.516 (0.14) 2.105 (0.04) 3.960 (0.00) 

 
Table 6: Global F-test for data size of 30 

Variability Type Small  Regular Large  
F (P-value)  38.5 (0.0000) 38.5 (0.0000) 38.5 (0.0000) 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 7: VIF for data size of 30 with small variability 
Variable Aspiration  Drive Wheels  Width Engine Size 

VIF Value 1.203736                 1.738988               3.171044               3.203679 
 

Table 8: VIF for data size of 30 with regular variability 
Variable Aspiration  Drive Wheels  Width Engine Size 

VIF Value     1.203736                 1.738988                 3.171044 3.203679 
 

Table 9 VIF for data size of 30 with large variability 
Variable Aspiration  Drive Wheels  Width Engine Size 

VIF Value     1.203736                 1.738988                     3.171044 3.203679 

 
  Fig. 5: Residual plot for model of size 30                Fig. 6: Residual plot for model of size 30                    
with small variability                                                              with regular variability 

 

            

       Fig. 7: Residual plot for model of size 30 with 
                  large variability  
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5.3.2.  Model building for 500 observations  
 
      Tables 10, 11, and 12 show the estimated parameters from the regression model along with 
the t test statistic and corresponding p-value for with small, regular, and large variability. All the 
predictors were needed in the model in the presence of other predictors at the 5% level of 
significance. Based on Global F-test for the three distinct models as shown in table 13, the set 
of predictor variables were significant in predicting the price. The assumption of constant 
variance is met based on the random patterns in the residual plots for the sample size of 500 
with small, regular and large variability, which is shown in figures 8,9 and 10. All the VIF values 
for the predictors in the three models as indicated in table 14, 15 and 16 were less than 10, 
hence there is no serious multicollinearity problems.  
 
Table 10: The estimated regression coefficients and p-values for data size of 500 with small 
variability. 

Regression 
Coefficient 

β̂0 β̂1 β̂2 β̂3 β̂4 

Estimate  -103800 -2730 1940 1548 113.7 
t (P-value) -12.814(0.00) -8.572(0.00) 6.322(0.00) 11.729(0.00) 13.160(0.00) 

 
Table 11: The estimated regression coefficients and p-values for data size of 500 with     regular 
variability. 

Regression 
Coefficient 

β̂0 β̂1 β̂2 β̂3 β̂4 

Estimate  -70116.578 -2730.389 1940.197 1094.866 80.427 
t (P-value) -12.154 (0.00) -8.572 (0.00)  6.322 (0.00)  11.729 (0.00) 13.160(0.00) 

 
Table 12: The estimated regression coefficients and p-values for data size of 500 with large 
variability. 

Regression 
Coefficient 

β̂0 β̂1 β̂2 β̂3 β̂4 

Estimate  -46269.082 -2730.389 1940.197 774.187 56.870 
t (P-value) -11.215 (0.00) -8.572 (0.00)  6.322 (0.00)  11.729 (0.00) 13.160(0.00) 

 
Table 13: Global F-test for data size of 500 

Variability Type Small  Regular Large  
F (P-value)  641.7 (0.0000) 641.7 (0.0000)  641.7 (0.0000) 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
     Fig. 8: Residual plot for model of size 500         Fig. 9: Residual plot for model of size 500                
with small variability                                                                with regular variability 
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Fig. 10: Residual plot for model of size 150 with 
                large variability  
 

Table 14: VIF for data size of 500 with small variability 
Variable Aspiration  Drive Wheels  Width Engine Size 

VIF Value 1.247094                1.707726                2.929908 3.070909 
 

Table 15: VIF for data size of 500 with regular variability 
Variable Aspiration  Drive Wheels  Width Engine Size 

VIF Value 1.247094                1.707726                2.929908 3.070909 
 

Table 16: VIF for data size of 500 with large variability 
Variable Aspiration  Drive Wheels  Width Engine Size 

VIF Value 1.247094                1.707726                2.929908 3.070909 

 
5.4.  RELATIVE EFFICIENCY 

 
       Given the number of imputations, m, and the fraction of missingness (FMI), the relative 
efficiency (RE) determines the best imputation procedure that produces the most precise results 
based on the measure of the differences in accuracy [31]. The RE is defined as 
 

ܧܴ =
1

1 + 
݉

 

 
where  is the fraction of missingness. For each imputation value, as the fraction of missingness 
increase, the RE tends to decrease accordingly as shown in table 17. For the purpose of this 
paper, we used an m value of 50 because the large value of m tends to yield more precise 
standard error and p-values [31,32].  
 

Table 17: Relative efficiency for different levels of FMI and m 
m/FMI 10% 20% 30% 40 % 50% 

10 0.9901 0.9804 0.9709 0.9615 0.9524 
20 0.9950 0.9901 0.9852 0.9804 0.9756 
30 0.9967 0.9934 0.9901 0.9868 0.9836 
40 0.9975 0.9950 0.9926 0.9901 0.9877 
50 0.9980 0.9960 0.9940 0.9921 0.9901 
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5.5.   IMPUTATION IMPLEMENTATION 
 
      For each of the 6 complete data sets of sample sizes 30 and 500 and variabilities of small, 
regular, and large, the first level of missingness was achieved by removing 10% of the 
observations from the predictor variables using the R function prodNA. The next 20% level of 
missingness was achieved by removing 10% level of missingness from the initial 10% removed.  
The next 30% level of missingness was also achieved by removing 10% level of missingness 
from the previous 20% and this continued in that sequence till 50% level of missing was 
attained. This produced a total of 30 missing datasets. Each of the three imputation methods for 
mixed dataset namely, the predictive mean matching (PMM), classification and regression tree 
(CART) and the random forest (RF) imputation methods were applied on the 30 missing 
datasets. For each imputation method,  ݉ = 50	imputed data sets were created. We then fit a 
regression model (as described in 5.1) for each of the 50 imputed datasets. The regression 
coefficient estimates (β̂0 to β̂4) from the 50 imputed data sets were then pooled together and 
stored.  This is repeated for 1000 iterations and the average of each of the 1000 regression 
coefficients for each variable were computed and compared to the coefficients of the complete 
data set found in 5.1.  
 
5.6.   ANALYSIS OF INTEREST 

 
      The best imputation method for imputing the missing data for a specified percentage of 
missingness is the one that produces the average regression coefficient from the imputed data, 
which is closest to the corresponding regression coefficient from the complete data. To evaluate 
this comparison, we compute the percentage deviation index (PDI) which is calculated as:  
 
ܫܦܲ

=
ݐ݂݂݊݁݅ܿ݅݁݋ܥ		݊݋݅ݏݏ݁ݎܴ݃݁	݀݁ݐܽ݉݅ݐݏܧ	݂݋	݊ܽ݁ܯ − ݐ݂݂݊݁݅ܿ݅݁݋ܥ	݊݋݅ݏݏ݁ݎܴ݃݁	݈ܽ݊݅݃݅ݎܱ − ݏݏ݁ݎܴ݃݁	݀݁ݐܽ݉݅ݐݏܧ	݂݋	݁݃ܽݎ݁ݒܣ

ݐ݂݂݊݁݅ܿ݅݁݋ܥ		݊݋݅ݏݏ݁ݎܴ݃݁	݈ܽ݊݅݃݅ݎܱ
∗ 100. 
 
For each of the complete datasets, the best imputation method is the one with the PDI closest to 
zero. The R2 value measures the prediction accuracy for a regression model and was computed 
for each of the 30 datasets.  

6.   RESULTS 
 
      This section of the study evaluates the analysis on the 30 multiple imputed datasets 
compared to the 6 complete data sets using the methods described in section 5.6. 
6.1 Analysis for Sample size of 30 with small variability 
 
      We see from the PMM method in table 18, the closeness in value of the estimated mean 
regression coefficient to the mean regression coefficient from the complete dataset at the 
respective level of missingness.  
      For the CART method, the closeness in value of the estimated mean regression coefficient 
to the mean regression coefficient from the complete dataset at the different level of 
missingness 
is shown in table 20.  
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      Considering the imputed dataset for the RF method, the closeness in value of the estimated 
mean regression coefficient to the mean regression coefficient from the complete dataset at the 
diverse level of missingness is shown in table 22.  
       As indicated in tables 19, 21 and 23, the PDI of the CART method is closest to zero among 
the three imputation methods which implied that the PMM is the best imputation method when 
considering this type of data. 
      At 10% level of missingness, the R2 values for the PMM, CART and RF methods are closest 
in value to the R2 value of the complete dataset.  
 
Table 18. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 30 with small variability from the PMM method. 

FMI/ Estimated Parameter/ 
R2 value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -113860.7 -2580.082 2135.510   1696.407   112.207   0.8323 
20% -156668.1 -1611.734  2334.245   2389.058   77.746   0.8450 
30% -133906.7 -1747.793 2339.214   2008.822   101.513   0.7879 
40% -145104.5 -1998.508 1652.049   2193.880   104.674   0.7488 
50% -108826.2 -3152.522   1689.462   1620.482   128.020   0.6980 

Actual Parameter from 
complete data set 

-82853.22 -3789.19 1832.32 1195.46 144.56 0.838 

 
Table 19. PDI for the estimated regression coefficients for sample size of 30 with small 
variability from the PMM model. 

FMI/ Estimated 
Parameter 

β̂0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.3742 -0.3191 0.1655 0.4190 -0.2238 0.0832 
20% 0.8909 -0.5746 0.2739 0.9984 -0.4622 0.2253 
30% 0.6162 -0.5387 0.2766 0.6804 -0.2978 0.1473 
40% 0.7513 -0.4726 -0.0984 0.8352 -0.2759 0.1479 
50% 0.3135 -0.1680 -0.0780 0.3555 -0.1144 0.0617 
Mean 0.5892 -0.4146 0.1079 0.6577 -0.2748 0.1331 

 
Table 20. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 30 with small variability from the CART method. 

FMI/ Estimated Parameter/ 
R2 value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -99337.21 -2300.507 2277.565 1475.387 109.7196 0.8061 
20% -101935.9 -1880.861 3214.774 1539.970 79.2240 0.7684 
30% -93821.36 -1435.086 3755.843 1427.984 61.9492 0.6861 
40% -54746.93 -1745.642 3510.737 799.4550 85.2806 0.6148 
50% -44128.60 -2197.659 2989.593 658.9630 85.8674 0.5236 

Actual Parameter from 
complete data set 

-82853.22 -3789.19 1832.32 1195.46 144.56 0.838 

 
Table 21. PDI for the estimated regression coefficients for sample size of 30 with small 
variability from the CART model 

FMI/ Estimated 
Parameter 

β̂0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.1989 -0.3929 0.2430 0.2341 -0.2410 0.0844 
20% 0.2303 -0.5036 0.75448 0.2881 -0.4519 0.0635 
30% 0.1324 -0.6213 1.04977 0.1945 -0.5714 0.0368 
40% -0.3392 -0.5393 0.9160 -0.3312 -0.4100 -0.0141 
50% -0.4674 -0.4200 0.6315 -0.4487 -0.4060 -0.222 
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Mean -0.0489 -0.4954 0.7189 -0.0126 -0.4161 -0.0508 
 
Table 22. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 30 with small variability from the RF method. 

FMI/ Estimated Parameter/ R2 
value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -96548.73 -4196.755 1540.982 1404.631 154.8746 0.8254 
20% -91545.67 -310.2089 196.2865 1328.216 138.9847 0.7661 
30% -110879.9 -1896.349 2704.616 1641.696 104.2328 0.6897 
40% -102228.0 -2204.240 3366.193 1513.572 97.1247 0.6059 
50% -100531.4 -802.0412 4489.046 1513.686 52.7117 0.5316 

Actual Parameter from 
complete data set 

-82853.22 -3789.19 1832.32 1195.46 144.56 0.838 

 
Table 23. PDI for the estimated regression coefficients for sample size of 30 with small 
variability from the RF model 
FMI/ Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.1652 0.1075 -0.1589 0.1749 0.0713 0.0720 
20% 0.1049 -0.9181 -0.8928 0.1110 -0.0385 -0.327 
30% 0.3382 -0.4995 0.4760 0.3732 -0.2789 0.0818 
40% 0.2338 -0.4182 0.8371 0.2661 -0.3281 0.118 
50% 0.2133 -0.7883 1.4499 0.2661 -0.6353 0.0101 
Mean 0.2111 -0.5033 0.3422 0.2383 -0.2419 0.00928 

 
6.2 Analysis for Sample size of 30 with regular variability 
 
      We see from the PMM method in table 24, the closeness in value of the estimated mean 
regression coefficient to the mean regression coefficient from the complete dataset at the 
respective level of missingness. 
      For the CART method, the closeness in value of the estimated mean regression coefficient 
to the mean regression coefficient from the complete dataset at the different level of 
missingness as indicated in table 26. 
     Considering the imputed dataset for RF method, the closeness in value of the estimated 
mean regression coefficient to the mean regression coefficient from the complete dataset at the 
diverse level of missingness is shown in table 28.  
      As indicated in tables 25, 27 and 29, the PDI of the CART method is closest to zero among 
the three imputation methods which implied that the CART is the best imputation method when 
considering this type of data. 
      At 10% level of missingness, the R2 values for the PMM, CART and RF methods are closest 
in value to the R2 value of the complete dataset. 
 
Table 24. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 30 with regular variability from the PMM method. 

FMI/ Estimated Parameter/ 
R2 value 

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -65531.45 -3038.283 2443.910 1025.445 78.6124 0.8102 
20% -79177.26 -2968.759 2297.999 1222.981 85.9305 0.7941 
30% -95356.30 -1878.115 2204.837 1488.819 65.9907 0.7214 
40% -84585.33 -3184.238 2647.687 1339.289 65.1588 0.6191 
50% -83597.78 -3226.548 2690.413 1326.301 63.4450 0.5991 

Actual Parameter from -54833.35 -3789.19 1832.32 845.32 102.22 0.838 
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complete data set 
 
Table 25. PDI for the estimated regression coefficients for sample size of 30 with regular 
variability from the PMM model. 

FMI/ Estimated 
Parameter 

β̂0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.1951 -0.1981 0.3337 0.2130 -0.2309 0.0626 
20% 0.4439 -0.2165 0.2541 0.4467 -0.1593 0.154 
30% 0.7390 -0.5043 0.2033 0.76124 -0.3544 0.169 
40% 0.5425 -0.1596 0.4449 0.5843 -0.3625 0.210 
50% 0.5245 -0.1484 0.4683 0.5689 -0.3793 0.207 
Mean 0.4890 -0.2454 0.3409 0.5148 -0.2973 0.160 

 
Table 26. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 30 with regular variability from the CART method. 

FMI/ Estimated Parameter/ R2 
value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -50560.78 -3942.212 2059.869 763.1116 113.1268 0.8231 
20% -81491.53 -2217.607 844.8390 1269.244 94.4400 0.7310 
30% -71488.29 -1164.968 2168.806 1102.110 73.4001 0.5554 
40% -65110.92 -1713.514 3629.544 998.3172 56.6923 0.4941 
50% -48822.49 -1604.709 4610.970 744.3413 45.9696 0.4610 

Actual Parameter from complete 
data set 

-54833.35 -3789.19 1832.32 845.32 102.22 0.838 

 
Table 27. PDI for the estimated regression coefficients for sample size of 30 with regular 
variability from the CART model. 
FMI/ Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.0779 0.0403 0.1241 -0.0972 0.1066 0.0192 
20% 0.4861 -0.4147 -0.5389 0.5014 -0.0761 -0.008.4 
30% 0.3037 -0.6925 0.1836 0.3037 -0.2819 -0.03.67 
40% 0.1874 -0.5477 0.980 0.1809 -0.4453 0.0712 
50% -0.1096 -0.5765 1.5164 -0.1194 -0.5502 0.0321 
Mean 0.1579 -0.4382 0.4532 0.1539 -0.2494 0.0155 

 
Table 28. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 30 with regular variability from the RF method. 

FMI/ Estimated Parameter/ R2 
value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -64149.01 -4196.755 1540.982 993.2241 109.5129 0.8253 
20% -61169.23 -3102.089 1962.865 939.1905 98.2770 0.7661 
30% -75693.21 -1896.349 2704.616 1160.854 73.7037 0.6897 
40% -69751.49 -2204.240 3366.193 1070.257 68.67754 0.6059 
50% -69673.64 -829.6779 4482.022 1071.819 37.3873 0.5316 

Actual Parameter from 
complete data set 

-54833.35 -3789.19 1832.32 845.32 102.22 0.838 

 
Table 29. PDI for the estimated regression coefficients for sample size of 30 with regular 
variability from the RF model. 

FMI/ Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean 
10% 0.1698 0.1075 -0.1589 0.1749 0.0713 0.0730 



 16

20% 0.1155 -0.1813 0.0712 0.1110 -0.0385 0.0156 
30% 0.3804 -0.4995 0.4760 0.3732 -0.2789 0.0902 
40% 0.2720 -0.4182 0.8371 0.2660 -0.3281 0.126 
50% 0.2706 -0.7810 1.4460 0.2679 -0.6342 0.114 
Mean 0.2417 -0.3545 0.5343 0.2386 -0.2417 0.0837 

 
6.3.  Analysis for Sample size of 30 with large variability 
 
      We see from table 30, the closeness in value of the estimated mean regression coefficient 
to the mean regression coefficient from the complete dataset at the respective level of 
missingness for the PMM method.  
      For the CART method, the closeness in value of the estimated mean regression coefficient 
to the mean regression coefficient from the complete dataset at the different level of 
missingness is shown in table 32. 
      Considering the imputed dataset for RF method, the closeness in value of the estimated 
mean regression coefficient to the mean regression coefficient from the complete dataset at the 
diverse level of missingness is shown in table 34.  
      As indicated in tables 31,33 and 35, the PDI of the CART method is closest to zero among 
the three imputation methods which implied that the CART is the best imputation method when 
considering this type of data. 
      At 10% level of missingness, the R2 values for the PMM, CART and RF methods are closest 
in value to the R2 value of the complete dataset. 
 
Table 30. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 30 with large variability from the PMM method. 

FMI/ Estimated Parameter/ R2 
value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -22117.53 -4860.589   2570.559   390.3774   76.7728 0.8572  
20% -33252.45 -4341.491   2186.129   582.6866   60.7146   0.7681 
30% -45248.03 -3807.438   1299.328   785.1202   55.9785   0.7536 
40% -46400.55 -3520.290   1376.959   809.2406   49.5510   0.6960 
50% -41112.64 -5470.598   1209.332e   758.7642   51.5799 0.6.663   

Actual Parameter from 
complete data set 

-35020.31 -3789.19 1832.32 597.73 72.28 0.838 

 
Table 31. PDI for the estimated regression coefficients for sample size of 30 with large 
variability from the PMM model. 
FMI/ Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.3684 0.2827 0.4028 -0.3469 0.0621 0.0065 
20% -0.0504 0.1457 0.1930 -0.0251 -0.1600 0.0206 
30% 0.2920 0.0048 -0.2908 0.3135 -0.2255 0.0188 
40% 0.3249 -0.0709 -0.2485 0.3538 -0.3144 0.0089 
50% 0.1739 0.4437 -0.3399 0.2694 -0.2863 0.0521 
Mean 0.0744 0.1612 -0.0566 0.1129 -0.1848 0.0214 

 
Table 32. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 30 with large variability from the CART method 

FMI/ Estimated Parameter/ 
R2 value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -31946.36 -3942.212   2059.86 539.6014   79.9927   0.8231 
20% -53975.19 -2245.837   759.7   901.7992   67.3925   0.7319 
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30% -56282.21 -2852.966 -1100.05   972.6104   79.5794 0.6652 
40% -54289.70 -3553.769   387.86   932.2304   69.5446   0.6848 
50% -38753.6 -4100.374   1433.102   667.9877   76.5142   0.6181 

Actual Parameter from 
complete data set 

-35020.31 -3789.19 1832.32 597.73 72.28 0.838 

 
Table 33. PDI for the estimated regression coefficients for sample size of 30 with large 
variability from the CART model 

FMI/ Estimated 
Parameter 

β̂0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.0877 0.0403 0.1241 -0.0972 0.1067 0.0173 
20% 0.5412 -0.4073 -0.5853 0.50870 -0.0676 -0.00206 
30% 0.6071 -0.2470 -1.6003 0.6271 0.1009 -0.102 
40% 0.5502 -0.0621 -0.7883 0.5596 -0.0378 0.0443 
50% 0.1066 0.0821 -0.2178 0.1175 0.0585 0.0294 
Mean 0.3434 -0.1188 -0.6135 0.3431 0.0321 -0.00271 

 
Table 34. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 30 with large variability from the RF method 

FMI/ Estimated Parameter/ R2 
value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -41238.96 -4196.755 1540.982 702.3155 77.4373 0.8253 
20% -39689.85 -3102.089 1962.865 664.1080 69.4923 0.7661 
30% -50812.45 -1896.349 2704.616 820.8479 52.1164 0.6896 
40% -46787.16 -2204.240 3366.193 756.7860 48.5623 0.6059 

50% -47821.45 -827.1917 4467.267 759.0041 26.4521 0.5316 
Actual Parameter from 

complete data set 
-35020.31 -3789.19 1832.32 597.73 72.28 0.838 

 
Table 35. PDI for the estimated regression coefficients for sample size of 30 with large 
variability from the RF model 

FMI/ Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean 
10% 0.1775 0.1075 -0.1589 0.1749 0.0713 0.0745 
20% 0.1333 -0.1813 0.0712 0.1110 -0.0385 0.0191 
30% 0.4509 -0.4995 0.4760 0.3732 -0.2789 0.104 
40% 0.3360 -0.4182 0.8371 0.2661 -0.3281 0.139 
50% 0.3655 -0.7816 1.4380 0.2698 -0.6340 0.132 
Mean 0.2926 -0.3546 0.5326 0.2390 -0.2416 0.0936 

 
6.4 Analysis for Sample size of 500 with small variability 
 
      We see from table 36, the closeness in value of the estimated mean regression coefficient 
to the mean regression coefficient from the complete dataset at the respective level of 
missingness for the PMM method.   
      For the CART method, the closeness in value of the estimated mean regression coefficient 
to the mean regression coefficient from the complete dataset at the different level of 
missingness is indicated in table 38. 
      Considering the imputed dataset for RF method, the closeness in value of the estimated 
mean regression coefficient to the mean regression coefficient from the complete dataset at the 
diverse level of missingness is shown in table 40.        
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      As indicated in tables 37, 39 and 41, the PDI of the RF method is closest to zero among the 
three imputation methods which implied that the RF is the best imputation method when 
considering this type of data. 
      At 10% level of missingness, the R2 values for the PMM, CART and RF methods are closest 
in value to the R2 value of the complete dataset. 
 
Table 36. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 500 with small variability from the PMM method. 

FMI/ Estimated Parameter/ 
R2 value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -103893.00 -2462.6620 1957.6970 1553.9660 108.1973 0.7916 
20% -107215.70 -2251.3880 1961.5730 1617.7560 99.1899 0.7551 
30% -105920.50 -2213.5760 1820.1220 1610.0520 94.0290 0.7032 
40% -100686.90 -2082.3870 1833.8440 1531.9900 91.5546 0.6480 
50% -90633.97 -1991.9760 1914.2280 1378.6420 89.5345 0.5882 

Actual Parameter from 
complete data set -103800.00 -2730.0000 1940.00 1548.00 113.7000 0.8370 

 
Table 37. PDI for the estimated regression coefficients for sample size of 500 with small 
variability from the PMM model. 

FMI/ Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean 
10% 0.0009 -0.0979 0.0091 0.0039 -0.0484 -0.0265 
20% 0.0329 -0.1753 0.0111 0.0451 -0.1276 -0.0428 
30% 0.0204 -0.1892 -0.0618 0.0401 -0.1730 -0.0727 
40% -0.0300 -0.2372 -0.0547 -0.0103 -0.1948 -0.1050 
50% -0.1268 -0.2703 -0.0133 -0.1094 -0.2125 -0.1460 
Mean -0.0205 -0.1940 -0.0219 -0.0061 -0.1513 -0.0788 

 
Table 38. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 500 with small variability from the CART method. 

FMI/ Estimated Parameter/ 
R2 value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -105194.70 -2428.8030 2006.8170 1575.6590 106.2510 0.7949 
20% -112654.4 -2355.077   2034.343   1712.408   92.2291 0.7413  
30% -109857.3 -2012.258   2049.193   1671.442   87.8637 0.6935  
40% -100686.10 -2362.6750 1989.8700 1545.3710 83.7254 0.6301 
50% -100038.40 -2089.1280 1900.2290 1546.0220 76.5229 0.5626 

Actual Parameter from 
complete data set -103800.00 -2730.0000 1940.0000 1548.000 113.7000 0.8370 

 
Table 39. PDI for the estimated regression coefficients for sample size of 500 with small 
variability from the CART model. 

FMI/ Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean 
10% 0.0134 -0.1103 0.0344 0.0179 -0.0655 -0.0220 
20% 0.0853 -0.1373 0.0486 0.1062 -0.1888 -0.0172 
30% 0.0584 -0.2629 0.0563 0.0797 -0.2272 -0.0592 
40% -0.0300 -0.1346 0.0257 -0.0017 -0.2636 -0.0808 
50% -0.0362 -0.2348 -0.0205 -0.0013 -0.3270 -0.1240 
Mean 0.0182 -0.1760 0.0289 0.0402 -0.2144 -0.0606 

 
Table 40. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 500 with small variability from the RF method. 
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FMI/ Estimated Parameter/ 
R2 value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -95357.64 -2688.8900 1888.4290 1400.0080 123.9874 0.7937 
20% -101278.70 -2452.4290 1967.3700 1500.1890 114.9021 0.7444 
30% -99413.51 -2315.8420 2106.6770 1473.0740 110.5008 0.6914 
40% -100110.30 -2205.1490 2158.1920 1493.0530 103.3730 0.6175 
50% -95610.29 -2124.4950 2400.9050 1430.2050 95.3939 0.5485 

Actual Parameter from 
complete data set -103800.00 -2730.0000 1940.0000 1548.0000 113.7000 0.8370 

 
Table 41. PDI for the estimated regression coefficients for sample size of 500 with small 
variability from the RF model. 

FMI/ Estimated 
Parameter 

β̂0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.0813 -0.0151 -0.0266 -0.0956 0.0905 -0.0256 
20% -0.0243 -0.1017 0.0141 -0.0309 0.0106 -0.0264 
30% -0.0423 -0.1517 0.0859 -0.0484 -0.0281 -0.0369 
40% -0.0355 -0.1923 0.1125 -0.0355 -0.0908 -0.0483 
50% -0.0789 -0.2218 0.2376 -0.0761 -0.1610 -0.0600 
Mean -0.0525 -0.1365 0.0847 -0.0573 -0.0358 -0.0395 
 
6.5.  Analysis for Sample size of 500 with regular variability 
 
      We see from table 42, the closeness in value of the estimated mean regression coefficient 
to the mean regression coefficient from the complete dataset at the respective level of 
missingness for the PMM method.   
       For the CART method, the closeness in value of the estimated mean regression coefficient 
to the mean regression coefficient from the complete dataset at the different level of 
missingness is shown in table 44. 
      Considering the imputed dataset for RF method, the closeness in value of the estimated 
mean regression coefficient to the mean regression coefficient from the complete dataset at the 
diverse level of missingness is indicated in table 46. 
      As indicated in tables 43, 45 and 47, the PDI of the RF method is closest to zero among the 
three imputation methods which implied that the RF is the best imputation method when 
considering this type of data. 
      At 10% level of missingness, the R2 values for the PMM, CART and RF methods are closest 
in value to the R2 value of the complete dataset. 
 
Table 42. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 500 with regular variability from the PMM method. 

FMI/ Estimated Parameter/ 
R2 value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -70244.06 -2461.573 1958.300 1098.599 76.5293 0.7915 
20% -72592.93 -2253.0830 1964.1520 1142.7950 70.1314 0.7549 
30% -71740.61 -2212.2250 1819.5860 1139.1700 66.4620 0.7033 
40% -67961.05 -2085.6120 1831.4270 1081.8520 64.8342 0.6480 
50% -61096.22 -1986.0450 1914.1730 975.9748 63.3122 0.5883 

Actual Parameter from 
complete data set -70116.58 -2730.3890 1940.1970 1094.866 80.4270 0.8370 

 
Table 43. PDI for the estimated regression coefficients for sample size of 500 with regular 
variability from the PMM model. 
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FMI/ Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean 
10% 0.0018 -0.0985 0.0093 0.0034 -0.0485 -0.0265 
20% 0.0353 -0.1748 0.0123 0.0438 -0.1280 -0.0423 
30% 0.0232 -0.1898 -0.0622 0.0405 -0.1736 -0.0724 
40% -0.0307 -0.2361 -0.0561 -0.0119 -0.1939 -0.1060 
50% -0.1286 -0.2726 -0.0134 -0.1086 -0.2128 -0.1470 
Mean -0.0198 -0.1944 -0.0220 -0.0066 -0.1514 -0.0788 

 
Table 44. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 500 with regular variability from the CART method. 

FMI/ Estimated Parameter/ 
R2 value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -71206.46 -2428.8020 2006.8170 1114.1590 75.1308 0.7949 
20% -76576.54 -2352.2960 2035.2870 1211.5850 65.1795 0.7415 
30% -71194.95 -2477.070 2069.316 1129.807 65.0326 0.7032 
40% -69535.82 -2182.6100 1876.5640 1105.6910 63.9851 0.6350 
50% -60128.91 -2302.2250 1909.2660 959.1289 66.6857 0.5858 

Actual Parameter from 
complete data set -70116.58 -2730.3890 1940.1970 1094.8660 80.4270 0.8370 

 
Table 45. PDI for the estimated regression coefficients for sample size of 500 with regular 
variability from the CART model. 

FMI/ Estimated 
Parameter 

β̂0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.0155 -0.1105 0.0343 0.0176 -0.0659 -0.0218 
20% 0.0921 -0.1385 0.0490 0.1066 -0.1896 -0.0161 
30% 0.0154 -0.0928 0.0665 0.0319 -0.1914 -0.0341 
40% -0.0083 -0.2006 -0.0328 0.0099 -0.2044 -0.0872 
50% -0.1424 -0.1568 -0.0159 -0.1240 -0.1709 -0.1220 
Mean -0.0055 -0.1398 0.0202 0.0084 -0.1644 -0.0562 
 
Table 46. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 500 with regular variability from the RF method. 

FMI/ Estimated 
Parameter/ R2 value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -64111.75 -2688.9250 1888.6320 989.7214 87.6866 0.7936 
20% -65815.03 -2592.9720 1915.2900 1021.3500 83.4956 0.7434 
30% -64042.88 -2451.8920 2002.1750 994.2339 81.1726 0.6831 

40% -62631.29 -2319.6130 2081.6430 971.0694 79.0294 0.6260 
50% -59706.33 -2407.291 2174.290 932.3030 75.3107 0.5602 

Actual Parameter from 
complete data set -70116.58 -2730.3890 1940.1970 1094.8660 80.4270 0.8370 

 
Table 47. PDI for the estimated regression coefficients for sample size of 500 with regular 
variability from the RF model. 

FMI/ Estimated 
Parameter 

β̂0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.0856 -0.0152 -0.0266 -0.0960 0.0903 -0.0266 
20% -0.0613 -0.0503 -0.0128 -0.0671 0.0382 -0.0307 
30% -0.0866 -0.1020 0.0319 -0.0919 0.0093 -0.0479 
40% -0.1068 -0.1504 0.0729 -0.1131 -0.0174 -0.0629 
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50% -0.1485 -0.1183 0.1207 -0.1485 -0.0636 -0.0716 
Mean -0.0978 -0.0873 0.0372 -0.1033 0.0113 -0.0480 

 
6.6.  Analysis for Sample size of 500 with large variability 
 
      We see from the PMM method in table 48, the closeness in value of the estimated mean 
regression coefficient to the mean regression coefficient from the complete dataset at the 
respective level of missingness.   
      For the CART method, the closeness in value of the estimated mean regression coefficient 
to the mean regression coefficient from the complete dataset at the different level of 
missingness in indicated in table 50.   
      Considering the imputed dataset for RF method, the closeness in value of the estimated 
mean regression coefficient to the mean regression coefficient from the complete dataset at the 
diverse level of missingness is shown in table 53.      
       As indicated in tables 49, 51 and 53, the PDI of the CART method is closest to zero among 
the three imputation methods which implied that the CART is the best imputation method when 
considering this type of data. 
      At 10% level of missingness, the R2 values for the PMM, CART and RF methods are closest 
in value to the R2 value of the complete dataset. 
 
Table 48. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 500 with large variability from the PMM method 

FMI/ Estimated Parameter/ 
R2 value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -48385.21 -2420.7740 1931.9760 811.5718 51.4061 0.8006 
20% -46815.54 -2366.1490 2017.0950 788.2721 49.4639 0.7672 
30% -46809.00 -2166.7340 2113.5000 787.2274 46.3549 0.7187 
40% -45842.28 -2162.6730 2031.9550 782.0615 42.5703 0.6789 
50% -43988.68 -1922.4720 2324.3070 748.3461 38.5242 0.6095 

Actual Parameter from 
complete data set -46269.08 -2730.3890 1940.1970 774.1870 56.8700 0.8370 

 
Table 49. PDI for the estimated regression coefficients for sample size of 500 with large 
variability from the PMM model 

FMI/ Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean 
10% 0.0457 -0.1134 -0.0042 0.0483 -0.0961 -0.0239 
20% 0.0118 -0.1334 0.0396 0.0182 -0.1302 -0.0388 
30% 0.0117 -0.2064 0.0893 0.0168 -0.1849 -0.0547 
40% -0.0092 -0.2079 0.0473 0.0102 -0.2514 -0.0822 
50% -0.0493 -0.2959 0.1980 -0.0334 -0.3226 -0.1010 
Mean 0.0021 -0.1914 0.0740 0.0120 -0.1970 -0.0601 

 
Table 50. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 500 with large variability from the CART method. 

FMI/ Estimated Parameter/ R2 
value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -47173.18 -2428.8040 2006.8170 787.8292 53.1255 0.7949 
20% -50997.24 -2354.0570 2034.3330 856.4394 46.0923 0.7414 
30% -49159.38 -2336.4330 2155.6480 829.4511 43.7683 0.7028 
40% -45739.94 -2252.973 2157.513 775.1587 44.3250 0.6638 
50% -41715.28 -2265.8550 2118.6030 718.0899 42.8254 0.5901 
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Actual Parameter from 
complete data set -46269.08 -2730.3890 1940.1970 774.1870 56.8700 0.8370 

 
Table 51. PDI for the estimated regression coefficients for sample size of 500 with large 
variability from the CART model. 

FMI/ Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean 
10% 0.0195 -0.1105 0.0343 0.0176 -0.0658 -0.0210 
20% 0.1022 -0.1378 0.0485 0.1062 -0.1895 -0.0141 
30% 0.0625 -0.1443 0.1110 0.0714 -0.2304 -0.0260 
40% -0.0114 -0.1749 0.1120 0.0013 -0.2206 -0.0587 
50% -0.0984 -0.1701 0.0920 -0.0725 -0.2470 -0.0992 
Mean 0.0149 -0.1475 0.0796 0.0248 -0.1907 -0.0438 

 
Table 52. Estimated mean of regression coefficients for each percentage of missingness for a 
sample size of 500 with large variability from the RF method. 

FMI/ Estimated Parameter/ 
R2 value  

β̂0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -42023.05 -2690.2220 1887.9330 699.7680 61.9947 0.7937 
20% -41432.82 -2547.8700 2189.3830 681.0770 1.0374 0.7392 
30% -42045.18 -2608.2730 2249.2190 701.5647 55.1047 0.6605 
40% -38799.95 -2608.5330 2156.3560 655.2298 54.4928 0.6083 
50% -38809.45 -2493.2390 2045.1260 661.4966 51.5938 0.5430 

Actual Parameter from 
complete data set -46269.08 -2730.3890 1940.1970 774.1870 56.8700 0.8370 

 
Table 53. PDI for the estimated regression coefficients for sample size of 500 with large 
variability from the RF model. 

FMI/ Estimated Parameter β̂0 β̂1 β̂2 β̂3 β̂4 Mean 
10% -0.0918 -0.0147 -0.0269 -0.0961 0.0901 -0.0279 
20% -0.1045 -0.0668 0.1284 -0.1203 -0.9818 -0.2290 
30% -0.0913 -0.0447 0.1593 -0.0938 -0.0310 -0.0203 
40% -0.1614 -0.0446 0.1114 -0.1537 -0.0418 -0.0580 
50% -0.1612 -0.0869 0.0541 -0.1456 -0.0928 -0.0865 
Mean -0.1220 -0.0516 0.0853 -0.1219 -0.2115 -0.0843 

7.   CONCLUSION 
 
      A performance analysis on the 30 mixed datasets based on the PDI’s of the three different 
imputation methods showed that the CART method was the best imputation method for dataset 
with sample size of 30 with small, regular and large variabilities as well as datasets with sample 
size of 500 with large variability.  On the other hand, the RF method was the best imputation 
method for datasets with sample size of 500 with small and regular variabilities.   
      Even though, the PMM method is considered as the default imputation method in the R 
package, the RF methods worked best mostly on a sample size of 500 datasets irrespective of 
the variability. The classification and regression tree imputation methods worked best mostly on 
sample size of 30 irrespective of the variability. 
For future works, studies should look at the best imputation methods for mixed dataset with a 
different statistic for measuring categorial variables (such as, the point biserial) and also look at 
the variability in the response variable. One could also look at different sample sizes as well.  
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