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Performance Comparison of Imputation 
Methods for Mixed Data Missing at Random 
with Small and Large Sample Data Set with 

Different Variability 
 
 
 

One of the concerns in the field of statistics is the presence of missing data, which leads 

to bias in parameter estimation and inaccurate results. However, the multiple imputation 

procedure is a remedy for handling missing data. This study looked at the best multiple 

imputation methods used to handle mixed variable datasets with different sample sizes 

and variability along with different levels of missingness. The study employed the 

predictive mean matching, classification and regression trees, and the random forest 

imputation methods. For each dataset, the multiple regression parameter estimates for 

the complete datasets were compared to the multiple regression parameter estimates 

found with the imputed dataset. The results showed that the random forest imputation 

method was the best for mostly a sample of 150 and 500 irrespective of the variability. 

The classification and regression tree imputation methods worked best mostly on sample 

of 30 irrespective of the variability. 
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1 INTRODUCTION 
 

Missing data in the world of economics, medicine, business management, natural and 

social sciences has been of growing concern over the years. Missing data is considered as 

an unstored data value for a variable in observation of interest [1]. As complete data sets 

are needed to help firms and institutions to produce more accurate and precise results, 

the presence of missing data rather leads to inaccurate results, bias in parameter 

estimation and reduction in statistical power. Missing data invariably give rise to reduced 

sample size and thus, leads to a less precise confidence interval and reduced power in the 

tests of significance. All these pitfalls lead to incorrect conclusions and invalid 

recommendations. 

Objective of the Study 
 

Considering data with different sample sizes, variability, and different percentages of 

missingness, the handling of missing data as a part of the preprocessing step can be a 

tedious task that requires the use of the most appropriate imputation methods to yield 

accurate and unbiased results. The study assesses the best multiple imputations by chain 

equation (MICE) procedure for handling missing data for large and small mixed data sets 

with different variability and with different percentage levels of missingness. One of the 

fundamental assumptions made was that the missing data were missing at random. 

1.1 Overview of Study 
 

Section 2 of the study looks at the three types of missing data. Section 3 examines the 

methods of imputations. Section 4 explains the multiple imputation chained equation 

(MICE) methods for mixed data. Section 5 addresses the methodology of the study. 

Section 6 elaborates on the results and Section 7 highlights the conclusion and future 

work. 
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2. TYPES OF MISSING DATA 
 

While the reason for missing data is difficult to establish in a survey with some reasons 

being the unwillingness on the part of respondents to answer private questions or the 

forgetfulness to answer certain questions, it is still imperative to carefully examine the 

pattern of missingness in data to set out the appropriate mechanism to handle such 

missing data. 

According to Rubin [5]; Little and Rubin [28]; Diggle et al. [29]; Diggle and Kenward 

[30], there are three types of missing data: missing completely at random (MCAR), 

missing at random (MAR), and missing not at random (MNAR). 

When the missingness of data is a result of observed and unobserved (missing) data, then 

the data is missing completely at random (MCAR) [3]. In this case, the probability of 

missingness is independent of the observed and unobserved data [4]. MCAR is considered 

ignorable since no information about the missing data is required. With the missing 

ܻ value (Ymiss) and observed ܻ value (Yobs) the probability of missing Y value is given as 
 

ܲ (ܴ|∅) where ܴ is an indicator function with 0 representing a missing value and 1 as an 

observed value; and ∅ describes the relation between the data and ܴ. Data that is 

completely missing at random is considered a simple random sample. For instance, 

consider marital status as one of the factors that determine the salary of an individual. 

The assumption of MCAR is satisfied if the individuals who didn’t report their salary were 

unrelated to their marital status. On the other hand, the assumption is being breached if 

individuals who didn’t report their salary on average were younger than the individuals 

that reported it. To test for MCAR assumption, we separate the data into two categories 

and then, test the difference between the two groups using a two-sample t-test. If there is 

a significant difference between the two groups, the MCAR assumption is satisfied. 
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When missing data is due to observed data but not unobserved data, then the data is 

missing at random (MAR) [5, 6]. The missing data is conditional on the observed variable. 

We can denote this as P (Ymiss |Y, X) = P (Ymiss |X) where Y is considered as a missing 

value, but X is always observed. For instance, the assumption of MAR is satisfied when 

the salary of a respondent which is missing depends on the person’s educational status 

but within each educational status category, the probability of missing data on salary was 

unrelated to the person’s salary. If a data is considered MAR, then some complete case 

analyses are valid under weaker assumption than MCAR. For instance, linear regression 

is unbiased if missingness is independent of the response variable but conditional on the 

predictors. When missing data is ignorable (any information about the missing data is not 

included when dealing with the missing data) and the missing data does not need to be 

modeled in the analysis of the dataset, then the MAR assumption is satisfied. However, 

when the missing data is non-ignorable (any information about the missing data is 

included when dealing with the missing data), then the modeling of the missing data leads 

to accurate parameter estimation. As of now, the MAR mechanism cannot be tested. 

When dealing with data that are completely missing at random, biased parameter 

estimates are produced and there is also a loss of statistical power. 

When missing data is due to unobserved data but not observed data, then the data is 

missing not at random (MNAR). The probability of missingness is associated with the 

missing value itself [4]. The MNAR produces small and biased parameter estimates. Data 

which is MNAR is non-ignorable since information of the missing data is required and 

most models are also not precise with this form of missingness. The probability 

distribution of MNAR is given as P (R | Yobs; Ymis; ∅), where the missing ܻ value is Ymiss; 

the observed ܻ value is Yobs ; ܴ represents the missing data indicator and ∅ describes the 
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relation between the data and ܴ. MNAR data cannot be tested. The assumption of MNAR 

would be satisfied if individuals with lesser salary do not report their salary. 
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3. METHODS OF IMPUTATION 
 

Several methods have been proposed on how to handle missing data and can be broken 

down into two categories: traditional and modern methods. The traditional methods are 

comprised of the deletion methods (such as pairwise and listwise deletion) and the single 

imputation methods (such as arithmetic mean imputation, regression imputation, and 

stochastic regression imputation). The modern methods of handling missing data are 

further broken into two approaches: joint modeling method and multiple imputation of 

chained equations (MICE). 

 Traditional Methods 
 

The two most common traditional methods of handling missing data are the listwise 

deletion and the pairwise deletion. With the listwise deletion, also known as the complete 

case analysis (CCA), when at least one value is missing from the entire observation, then 

the entire observation is dropped from the analysis [7] which is the main shortfall. With 

this method, there is an assumption that a random sample chosen from the originally 

targeted sample is collected to represent the complete case, [7] which is not the case in 

real data since there is often a reason why a data value might be missing. 

Another traditional method of handling missing data is the pairwise deletion. The 

pairwise deletion method involves the removing cases on an analysis-by-analysis basis 

which minimizes the loss that results from the listwise deletion [8]. In pairwise deletion, 

variables with missing information are deleted in a specific analysis. Else, variables with 

complete information have their cases included in the analysis. According to Graham 

(2009), biased parameter estimates are produced because of the diverse sample sizes 

used in the pairwise deletion method. 
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One of the main shortfalls of the two deletion methods is that the data are missing 

completely at random. However, the MCAR data can lead to reduced sample size, loss of 

statistical power, and then generate biased parameter estimates [9] and thus, the deletion 

methods are not ideal in most situations. 

The single imputation methods are another traditional way of handling missing data. 

With the arithmetic mean imputation, all cases of missing values for a particular variable 

are replaced with the computed arithmetic mean for that particular variable. Since the 

mean is biased towards outliers, the arithmetic mean method can affect the parameter 

estimate and variability of the data. 

With the regression imputation method, a regression model predicts the missing value, 

and the estimated response value replaces the missing data. The regression imputation 

method produces biased parameter estimates even though it is a better method as 

compared to the arithmetic mean method. 

With the deck imputation, values are randomly drawn from the observed values and these 

values are used to replace the missing values. In hot deck imputation, the observed values 

are obtained from the same dataset which contains the missing values while in cold deck 

imputation, the observed value used for the imputation is obtained from an external 

source (such as data from a previous survey) which does not contain the missing value. 

The replacement of the missing values with the observed values leads to a narrow interval 

by underestimating the variability of the completed data [10]. 

With the stochastic regression imputation, which is a way to improve regression 

imputation, accounts from the variability in the predicted incomplete values. This method 

adds a random error to the predicted value from the regression and able to reproduce the 

appropriate correlation between the missing value and observed terms. The shortfall of 
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the stochastic regression imputation is that the complexity that arises from the several 

missing data in multivariate data since each missing data require a unique regression 

equation. With the response pattern imputation, this method can generate relatively 

accurate parameter estimates with MCAR data and bias estimates when dealing with 

MAR data [11]. 

The most obvious drawback of single imputation is the main assumption of considering 

the true value as the imputed value. This drawback underestimates of the variance, thus 

affects statistical tests and confidence interval [27]. 

 Modern Methods 
 

The shortcomings associated with the traditional methods of handling missing data led 

to the adoption and implementation of modern methods to handle missing data with high 

accuracy. 

 Joint Modeling 
 

The joint modeling (JM) method of handling missing data is most appropriately used 

when dealing with time-to-event data (data which occur when attention is fixated on the 

time elapsing prior to experiencing an event) and longitudinal data since the JM gives an 

efficient estimate of the treatment effect hence decreases the bias in the treatment effect 

[12]. The time-to-event component and longitudinal component serve as the two 

components of the joint modeling method. JM comprises of a linear model with a random 

effect [12]. 

The model is built on a multivariate distribution. Mostly, the JM model is based 

commonly on the multivariate normal distribution, which is used to draw missing data 

simultaneously from all incomplete variables [14]. With the JM method, the missing data 

are partitioned into groups of identical patterns and the joint model, which is common to 
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all the observations are used to impute the missing entries with each group of the identical 

missing data pattern. For more information on JM, see [35, 36]. 

 Multiple Imputation of Chained Equation 
 

Multiple imputation of chained equations (MICE), also known as fully conditional 

specification (FCS) is used for the computation of multiple imputations instead of a single 

imputation. The multiple imputation method resolves the impreciseness and 

uncertainties in single imputation. When the cause for the missing value is unknown, then 

the multiple imputation method aims to provide valid inference [27]. MICE is required 

when a multivariate distribution is inappropriate, unknown, or both unlike the JM 

method that requires the assumption of a known multivariate distribution [16]. Unlike 

the JM, the MICE method imputes variables one-by-one from series of the univariate 

conditional distribution. One main advantage of the MICE approach is that the method is 

flexible to the type of data. It can impute data for binary, categorical, and quantitative 

variables including data sets with mixed type of data. 

The multiple imputation chained equation (MICE) process is illustrated in Figure 1. The 

first stage, also termed the imputation stage, involves creating a complete data set by 

substituting the missing values with estimated values using a multiple imputation (MI) 

method based on the type of variable(s). The second stage, called the analysis stage, 

involves analyzing the complete data in the first stage with a statistical method of interest. 

The pooling stage, which is the final stage, generates single point estimates for the missing 

observations by merging the analyzed results in the second stage. 
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Figure 1: Illustration of MICE procedure 
 
 

The table 1 indicates some of the imputation methods in the mice package. 
 

Table 1: Imputation Methods in the MICE 
 

Model Name Name of model in R Variable type 

Predictive mean matching pmm numeric 

Bayesian linear regression norm numeric 

Unconditional mean imputation Mean numeric 

Two-level normal imputation 2l. norm numeric 

Multinomial logit model polyreg Ordered > 2 levels 

Classification and regression trees cart any 

Linear regression non-Bayesian norm.nob numeric 

Ordered logit model polr factor 

Random forest imputations rf any 

Linear discriminant analysis Ida factor 

Random sample from observed data sample any 

Logistic regression logreg Factor with 2 levels 
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4. MI METHODS FOR MIXED DATA 
 

Data containing both quantitative and categorical variable (mixed data) that has missing 

values can be imputed using several different methods. The methods focused in this 

paper includes classification and regression trees, predictive mean matching, and 

random forest. 

Classification and Regression Trees 
 

Classification and regression trees (CART), similarly identified as decision trees, are used 

to impute missing values. For the classification tree, the predicted response is the class 

that contains the data while in the regression tree, the predicted response is a real 

number. The implementation of the imputation method in CART is done by first using 

the observed data to fit the classification and regression tree. Then the prediction of the 

terminal node of the fitted tree where each missing observation finally ends up is 

determined. Finally, the observed value which is derived from a random draw for the 

elements in the node is regarded as the imputation [23]. 

Consider a CART that aims to predict the systolic blood pressure. The CART is illustrated 

in figure 2. We observe at the first level that the condition under which the subject moves 

to the next level is conditional on whether the diastolic blood pressure (dis) is less than 

93 or not. At the second level, the movement to the third stage is dependent on whether 

dis is less than 71 or not. At the third stage, the condition under which the subject moves 

to the fourth stage is dependent on whether the cu-size (c1) is less than 0.5 or blood 

pressure time (time) is less than 510. The classification tree at the fourth level indicates 

the movement of the subject to the fifth level if the if time is less than 691 or pulse is less 

than 67. The final stage predicts the systolic blood pressure if the pulse is less than 65 or 
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not. Considering the order of importance in the tree, the diastolic blood pressure variable 

is most important, followed by cu_ size, blood pressure time, and then pulse. 

 

 
Figure 2: Diagram of Classification and Regression Tree 

 
 

 Predictive Mean Matching 
 

The predicted mean matching (PMM) method takes values from observed data to impute 

missing values which preserves the distribution of the observed data in the missing, thus 

enables the PMM method to generate realistic values [2]. With PMM, corresponding 

values from the complete case that are most similar to the missing values replace these 

missing values [18]. Even when the structural part of the imputation is incorrect, the 

PMM preserves the non-linear relation which serves as an advantage for using the PMM 

method [16]. When the assumption is normality is breached, the PMM is considered more 

suitable than regression even though the PMM is alike to the regression approach [24]. 

The imputed values are mostly realistic and a good representation of the possible missing 

value. On the other hand, the PMM method does not work properly on small sample sizes 

because the PMM does not emphasize on the between imputation variability with small 

number of predictors [16]. 
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With the PMM methods, missing values are imputed by regressing incomplete variables 

on co-variates, thus generating a set of coefficients, β. A random set of coefficients, β*, 

are then drawn from the distribution of β. Predicted values for all occurrences in 

incomplete variables are produced using the new coefficients β*. The predicted values are 

then used as a system of measurement to detect complete cases with observed values that 

are near to the predicted values of each missing case of the target incomplete variable. 

The missing values are imputed using the observed values of the complete cases. Each of 

the missing cases is fitted to 5 completed cases with observed values which are close to 

the predicted values [31]. 

 Random Forest Approaches 
 

The random forest is considered as the collection of several decision trees fit with training 

data. The random forest is used to impute missing values for continuous variables by 

drawing randomly from an independent normal distribution, centered on means 

predicted by the random forest. On the other hand, for categorical variables, the random 

forest predicts missing values trained on observed values. 

 Proximity Imputation 
 

With the proximity imputation method, the random forest model can be fit after some 

method of imputing the missing values has been implemented and this process is termed 

the pre-imputing of data. The median of the non-missing value is imputed for the 

quantitative missing values whereas the most occurring non-missing value is imputed for 

categorical missing values [25]. This is termed as strawman imputation. An ݊ × ݊ 

proximity matrix (a square matrix that contains the distance taken pairwise between the 

elements of the matrix) used to detect structures in the data and symmetry is generated. 

For each element, ݅ and ݆ that share a common terminal, the (݅, ݆ ) entry denotes the 
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fraction of tress. One’s expectation is to have the same terminal nodes having similar 

observations and different terminal nodes having dissimilar observations. The original 

missing values in the data set are imputed using the proximity matrix [25]. 

For mixed data, the quantitative variable is imputed using the weighted averages of the 

non-missing observations, with the weights serving as the proximities while the 

categorical variable is imputed using the category with the largest mean proximity [25]. 

A new random forest is generated, and the process is iterated a few times [33] 

 On-the-fly Imputation 
 

Contrary to the proximity imputation, data is imputed simultaneously while growing the 

forest when employing the on-the-fly imputation (OTF) [25]. One of the shortcomings of 

the proximity imputation which includes variable importance (a measure of how much 

including or removing a variable affect the prediction accuracy) and bias estimates is 

addressed using one-the-fly imputation. With OTF, observed data is used to calculate the 

split statistics and imputed values reset to missing after each split. When data is missing, 

a random value from the in-bag observed data is used to impute the value. If the terminal 

node is reached, the out-of-bag (OOB) observed terminal node data from all the trees is 

used to impute the missing values. For quantitative values, the mean observed value is 

used while the highest observed value is used for categorical values. There is a random 

selection of the variable used to split each node. There is an iteration of the process where 

in the first iteration, the estimates used are OOB. Then in-bag estimates are used for 

additional iteration since there is the non-existence of the OOB estimates [25]. 

 missForest and mForest Imputation 
 

The missForest is usually employed to predict missing values using a random forest 

trained on the observed values of a data matrix. Apart from its use in imputing mixed 
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data, the missForest can also be used to impute complex interaction and non-linear 

relations [34]. Compared to the other imputation methods, there are prediction problems 

associated with the missForest algorithm. First imputing data by regressing each variable 

against the other variables helps in the prediction of the missing data of the response 

variable [25]. There could be slowness in computation depending on the amount of data. 

Considering the case of ݊  variables, each iteration will be well fit if there are ݊ forests. The 

mForest is usually employed when handling large ݊ values that is a computationally faster 

form of missForest. With this method, ݊ variables are assigned to groups hence resulting 

in less forest being fit. 

Multivariate splitting is used to grow each forest. There is the exclusion of missing values 

in the response and the split-rule is averaged over observed responses [25]. Final missing 

response values are imputed using the prediction method. With less computation, some 

studies have concluded that the performance of the mForest and the missForest are at 

par. 
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5. METHODOLOGY 
 

This section describes the data source, generation of the 9 complete datasets, analysis of 

the data, and the imputation implementation in the study. 

 DATA SOURCE AND DESCRIPTION 
 

The data generated for this study is modeled after the 1985 Auto Import Database. This 

data measures the price of an automobile based on the width of an automobile, engine 

size, aspiration and drivetrain (denoted as drive wheels). The data can be freely accessed 

on the UCI Machine Learning Repository at: 

https://archive.ics.uci.edu/ml/datasets/Automobile. 

For this study, the response variable is the price of an automobile while the predictor 

variables were width of an automobile, engine size, aspiration and drive wheels. Width 

of the automobile and engine size are quantitative while aspiration and drive wheels are 

categorical. The aspiration is a binary variable with categorized as 4wd and fwd while 

drive wheel is a binary variable categorized as std and turbo. The entire data set contains 

795 observations. The regression model was found to be: 

Ŷ =-68978.03 - 2178.85X1 + 2208.55X2 + 1098.56X3 + 79.85X4 
 

where Ŷ is the estimated price of an automobile, X1 represents aspiration, X2 represents 

drive wheels, X3 represents, and X4 represents engine size. 

 Evaluating the Model 
 

One of the vital tests conducted during model selection is the test of the significance of 

the predictors in the model 

H0: β1= β2=…= β4=0 
 

H1: At least one βj does not equal 0 for j=1...,4. 
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The Global F-test resulted in a p-value of approximately 0 indicating that at least one 

predictor is significant in the model. 

Since the data set is large (795 observations), the central limit theorem satisfies the 

assumption of normality. For more information on the central limit theorem, see [3] and 

[6]. Figure 3 shows the residual plot for the main model and indicates assumption 

0f constant error variance was met. 
 
 
 
 
 
 

 

Figure 3: Residual plot for main model 
 

All the 4 predictors have variance inflation factor (VIF) values less than 10 as shown in 

Table 2, which signifies that there is no serious issue of multicollinearity in the best 

regression model. 

Table 2: VIF values for the best regression model with 4 predictors 
 

Variable Aspiration Drive 
Wheels 

Width Engine 
Size 

VIF Value 1.255447 1.753623 3.041604 3.089541 

 
The ratio of the PRESS statistic and SSE produces a value of 1.114822 (close to 1) which 

indicates that the regression model has a good predictive ability. 
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Based on the internally studentized residual, only a few observations had the |ri| greater 

than 2.5, hence there are only a few outliers in the response. Also, a few observations were 

flagged as outliers in X using the leverage value (hii) as shown in Figure 4 where many of 

the observations fell above the threshold of 0.012 computed as (2*p)/n, where p = 5 and 

݊ =795. The Difference in Fits (DFFITS) and Cook's distance were used to check for 

influential outliers. In figure 5, we noticed lots of observations falling above or below the 

threshold of +/- 0.158 computed as +/- (2*sqrt(p/n))), where p = 5 and n = 795. In Figure 

6, the threshold for influential observation is 0.8710369 (computed as qf (0.5, p, n-p), 

and there were no influential observations detected. No action was carried out to 

eliminate potentially influential observation since the reduced model produced strong 

results. 

 

 
Figure 4:  Index plot of hii 
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 GENERATION OF DATA 
 

An R package, SimMultiCorrData, was used to generate the dataset with a specified 

correlation matrix simultaneously. The continuous variables (width, engine size, and 

price) were generated with Headrick’s fifth order power method transformation using the 

mean and variance from auto import dataset for each variable while preserving the 

correlation structure. This method matches the six standardized cumulants (mean, 

variance, skewness, standardized kurtosis, and standardized fifth and sixth cumulants). 

We assumed the skewness, standardized kurtosis, and the standardized fifth and sixth 

cumulants were zero [37]. The categorical variables were simulated by discretizing the 

standard normal variables at quantiles. These quantiles were found by looking at the 

inverse standard normal based on the probabilities of success for each variable (aspiration 

and drive wheels) as described in section 5.1. [37]. 

A pseudo complete dataset of sample sizes of 30, 150 and 500 was generated. For each 

sample size, a dataset with small, regular, and large variabilities was also generated. We 

define the regular variability as the same variability from the auto import dataset for each 

variable. The small variability was obtained by halving the regular while the large 

variability was obtained by doubling the regular variability from the auto import dataset. 

A total of 9 complete datasets were produced for each of the 3 sample sizes of 30, 150 and 

500 with each having small, regular, and large variabilities. 

 
 MODEL BUILDING FOR THE 9 COMPLETE DATASETS 

 
Using price as the response variable with aspiration, drive wheels, width and engine size 

as the predictor variables, regression models were fitted for 9 complete datasets. 
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 Model building for 30 observations. 
 

Tables 3, 4, and 5 show the estimated parameters from the regression model along with 

the t test statistic and corresponding p-value for with small, regular, and large variability. 

All the predictors were needed in the model in the presence of other predictors except for 

drive wheels at the 5% level of significance. Based on Global F-test for the three distinct 

models as shown in table 6, the set of predictor variables were significant in predicting 

the price, hence we left drive wheels in the model for comparison of the other sample 

sizes used. The assumption of constant variance is met based on the random patterns in 

the residual plots for the sample size of 30 with small, regular and large variability, which 

is shown in figures 7, 8 and 9, respectively. All the VIF values for the predictors in the 

three models as indicated in table 7, 8 and 9 were less than 10, hence there is no serious 

multicollinearity problems. 

Table 3: The estimated regression coefficients and p-values for data size of 30 with small 

variability. 

Regression 
Coefficient 

βˆ0 β̂1 β̂2 β̂3 β̂4 

Estimate -82853.22 -3789.19 1832.32 1195.46 144.56 
t (P-value) -2.395 (0.02) -2.980 (0.00) 1.516(0.14) 2.105(0.04) 3.960(0.00) 

 
Table 4: The estimated regression coefficients and p-values for data size of 30 with 

regular variability. 

Regression 
Coefficient 

βˆ0 β̂1 β̂2 β̂3 β̂4 

Estimate -54833.35 -3789.19 1832.32 845.32 102.22 
t (P-value) -2.232 (0.03) -2.980 (0.01) 1.516 (0.14) 2.105 (0.04) 3.960 (0.00) 

 
Table 5: The estimated regression coefficients and p-values for data size of 30 with large 

variability. 

Regression 
Coefficient 

βˆ0 β̂1 β̂2 β̂3 β̂4 

Estimate -35020.31 -3789.19 1832.32 597.73 72.28 
t (P-value) -2.002 (0.06) -2.980 (0.01) 1.516 (0.14) 2.105 (0.04) 3.960 (0.00) 
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Table 6: Global F-test for data size of 30 
Variability Type Small Regular Large 

F (P-value) 38.5 (0.0000) 38.5 (0.0000) 38.5 (0.0000) 
 
 
 

Fig. 7: Residual plot for model of size 30 Fig. 8: Residual plot for model of size 30 

with small variability  with regular variability 

 
 
 
 

 
Fig. 9: Residual plot for model of size 30 with 

large variability 

Table 7: VIF for data size of 30 with small variability 
 

Variable Aspiration Drive 
Wheels 

Width Engine 
Size 

VIF Value 1.203736 1.738988 3.171044 3.203679 
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Table 8: VIF for data size of 30 with regular variability 
Variable Aspiration Drive 

Wheels 
Width Engine 

Size 
VIF Value 1.203736 1.738988 3.171044 3.203679 

 
Table 9 VIF for data size of 30 with large variability 

Variable Aspiration Drive 
Wheels 

Width Engine 
Size 

VIF Value 1.203736 1.738988 3.171044 3.203679 
 
 

 Model building for 150 observations 
 

Tables 10, 11, and 12 show the estimated parameters from the regression model along with 

the t test statistic and corresponding p-value for with small, regular, and large variability. 

All the predictors were needed in the model in the presence of other predictors at the 5% 

level of significance. The Global F-test for the three different models as shown in table 13, 

the set of predictor variables were significant in predicting the price. The assumption of 

constant variance is met based on the random patterns in the residual plots for the sample 

size of 150 with small, regular and large variability, which is shown in figures 10,11 and 12 

respectively. All the VIF values for the predictors in the three models as indicated in table 

14, 15 and 16 were less than 10, thus there is no serious multicollinearity problems. 

 
Table 10: The estimated regression coefficients and p-values for data size of 150 with small 

variability. 

Regression 
Coefficient 

βˆ0 β̂1 β̂2 β̂3 β̂4 

Estimate -110813.37 -1836.14 2562.31 1640.85 103.70 
t (P-value) -7.521 (0.00) -3.015 (0.003) 4.397 (0.00) 6.829 (0.00) 6.534 (0.00) 

 
Table 11: The estimated regression coefficients and p-values for data size of 150 with 

regular variability. 

Regression 
Coefficient 

βˆ0 β̂1 β̂2 β̂3 β̂4 



UNDER PEER REVIEW 

23 

 

 

 
 
 
 
 

Estimate -75661.50 -1836.14 2562.31 1160.26 73.33 
t (P-value) -7.213 (0.00) -3.015 (0.003) 4.397 (0.00) 6.829 (0.00) 6.534 (0.00) 

 

Table 12: The estimated regression coefficients and p-values for data size of 150 with large 

variability. 

Regression 
Coefficient 

βˆ0 β̂1 β̂2 β̂3 β̂4 

Estimate -50805.367 -1836.137 2562.310 820.425 51.850 
t (P-value) -6.767 (0.00) -3.015 (0.003) 4.397 (0.00) 6.829 (0.00) 6.534 (0.00) 

 
 

Table 13: Global F-test for data size of 150 
Variability Type Small Regular Large 

F (P-value) 189.2 (0.0000) 189.2 (0.0000) 189.2 (0.0000) 
 
 

Fig. 10: Residual plot for model of size 150 Fig. 11: Residual plot for model of size 150 

with small variability  with regular variability 

 
 

Fig. 12: Residual plot for model of size 150 with 

large variability 
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Table 14: VIF for data size of 150 with small variability 
Variable Aspiration Drive 

Wheels 
Width Engine 

Size 
VIF Value 1.309386 1.849866 2.858691 3.049957 

 
 

Table 15: VIF for data size of 150 with regular variability 
Variable Aspiration Drive 

Wheels 
Width Engine 

Size 
VIF Value 1.309386 1.849866 2.858691 3.049957 

 
 

Table 16: VIF for data size of 150 with large variability 
Variable Aspiration Drive 

Wheels 
Width Engine 

Size 
VIF Value 1.309386 1.849866 2.858691 3.049957 

 
 

 Model building for 500 observations 
 

Tables 17, 18, and 19 show the estimated parameters from the regression model along 

with the t test statistic and corresponding p-value for with small, regular, and large 

variability. All the predictors were needed in the model in the presence of other predictors 

at the 5% level of significance. Based on Global F-test for the three distinct models as 

shown in table 20, the set of predictor variables were significant in predicting the price. 

The assumption of constant variance is met based on the random patterns in the residual 

plots for the sample size of 500 with small, regular and large variability, which is shown 

in figures 13,14 and 15. All the VIF values for the predictors in the three models as 

indicated in table 21, 22 and 23 were less than 10, hence there is no serious 

multicollinearity problems. 

Table 17: The estimated regression coefficients and p-values for data size of 500 with 

small variability. 

Regression 
Coefficient 

βˆ0 β̂1 β̂2 β̂3 β̂4 

Estimate -103800 -2730 1940 1548 113.7 
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t (P-value) -12.814(0.00) -8.572(0.00) 6.322(0.00) 11.729(0.00) 13.160(0.00) 
 

Table 18: The estimated regression coefficients and p-values for data size of 500 with 

regular variability. 

Regression 
Coefficient 

βˆ0 β̂1 β̂2 β̂3 β̂4 

Estimate -70116.578 -2730.389 1940.197 1094.866 80.427 
t (P-value) -12.154 (0.00) -8.572 (0.00) 6.322 (0.00) 11.729 (0.00) 13.160(0.00) 

 
 

Table 19: The estimated regression coefficients and p-values for data size of 500 with large 

variability. 

Regression 
Coefficient 

βˆ0 β̂1 β̂2 β̂3 β̂4 

Estimate -46269.082 -2730.389 1940.197 774.187 56.870 
t (P-value) -11.215 (0.00) -8.572 (0.00) 6.322 (0.00) 11.729 (0.00) 13.160(0.00) 

 
 

Table 20: Global F-test for data size of 500 
Variability Type Small Regular Large 

F (P-value) 641.7 (0.0000) 641.7 (0.0000) 641.7 (0.0000) 
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Fig. 13: Residual plot for model of size 500 Fig. 14: Residual plot for model of size 500 

with small variability  with regular variability 

 
 
 
 
 

Fig. 15: Residual plot for model of size 150 with 

large variability 

 
 

Table 21: VIF for data size of 500 with small variability 
Variable Aspiration Drive 

Wheels 
Width Engine 

Size 
VIF Value 1.247094 1.707726 2.929908 3.070909 

 
 

Table 22: VIF for data size of 500 with regular variability 
Variable Aspiration Drive 

Wheels 
Width Engine 

Size 
VIF Value 1.247094 1.707726 2.929908 3.070909 
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Table 23: VIF for data size of 500 with large variability 
Variable Aspiration Drive 

Wheels 
Width Engine 

Size 
VIF Value 1.247094 1.707726 2.929908 3.070909 

 
 RELATIVE EFFICIENCY 

 
Given the number of imputations, m, and the fraction of missingness (FMI), the relative 

efficiency (RE) determines the best imputation procedure that produces the most precise 

results based on the measure of the differences in accuracy [31]. The RE is defined as 

1 
 = ܧܴ

1 + ݉ 

where  is the fraction of missingness. For each imputation value, as the fraction of 

missingness increase, the RE tends to decrease accordingly as shown in table 24. For the 

purpose of this paper, we used an m value of 50 because the large value of m tends to yield 

more precise standard error and p-values [31,32]. 

Table 24: Relative efficiency for different levels of FMI and m 
m/FMI 10% 20% 30% 40 % 50% 

5 0.9804 0.9615 0.9434 0.9259 0.9091 
10 0.9901 0.9804 0.9709 0.9615 0.9524 
15 0.9934 0.9868 0.9804 0.9740 0.9677 
20 0.9950 0.9901 0.9852 0.9804 0.9756 
25 0.9961 0.9920 0.9881 0.9840 0.9801 
30 0.9967 0.9934 0.9901 0.9868 0.9836 
40 0.9975 0.9950 0.9926 0.9901 0.9877 
50 0.9980 0.9960 0.9940 0.9921 0.9901 

 
 IMPUTATION IMPLEMENTATION 

 
For each of the 9 complete data sets of sample sizes 30, 150 and 500 and variabilities of 

small, regular, and large, the first level of missingness was achieved by removing 10% of 

the observations from the predictor variables using the R function prodNA. The next 20% 
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level of missingness was achieved by removing 10% level of missingness from the initial 

10% removed. The next 30% level of missingness was also achieved by removing 10% 

level of missingness from the previous 20% and this continued in that sequence till 50% 

level of missing was attained. This produced a total of 45 missing datasets. Each of the 

three imputation methods for mixed dataset namely, the predictive mean matching 

(PMM), classification and regression tree (CART) and the random forest (RF) imputation 

methods were applied on the 45 missing datasets. For each imputation method, ݉ = 

50 imputed data sets were created. We then fit a regression model (as described in 5.1) 

for each of the 50 imputed datasets. The regression coefficient estimates (β̂0 to β̂4) from 

the 50 imputed data sets were then pooled together and stored. This is repeated for 1000 

iterations and the average of each of the 1000 regression coefficients for each variable 

were computed and compared to the coefficients of the complete data set found in 5.1. 

 ANALYSIS OF INTEREST 
 

The best imputation method for imputing the missing data for a specified percentage of 

missingness is the one that produces the average regression coefficient from the imputed 

data, which is closest to the corresponding regression coefficient from the complete data. 

To evaluate this comparison, we compute the percentage deviation index (PDI), which is 

a measure of how far the average of the estimated regression coefficient from the imputed 

data is away from the regression coefficient estimates from the complete data. The PDI is 

calculated as: 

 = ܫܦܲ
 ݐ݂݂݊݁݅ܿ݅݁ܥ ݊݅ݏݏ݁ݎܴ݃݁ ݈ܽ݊݅݃݅ݎܱ − ݐ݂݂݊݁݅ܿ݅݁ܥ ݊݅ݏݏ݁ݎܴ݃݁ ݀݁ݐܽ݉݅ݐݏܧ ݂ ݊ܽ݁ܯ

 
 

 ݐ݂݂݊݁݅ܿ݅݁ܥ ݊݅ݏݏ݁ݎܴ݃݁ ݈ܽ݊݅݃݅ݎܱ
 

∗ 100. 
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For each of the complete datasets, the best imputation method is the one with the PDI 

closest to zero. The R2 value measures the prediction accuracy for a regression model and 

was computed for each of the 45 datasets. 
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6. RESULTS 
 

This section of the study evaluates the analysis on the 45 multiple imputed datasets 

compared to the 9 complete data sets using the methods described in section 5.6. 

 Analysis for Sample size of 30 with small variability 
 

We see from table 25 that at the 10% level of missingness for the PMM method, the 

estimated mean regression coefficient for β̂0, β̂1 and β̂2were closest in value to the mean 

regression coefficient from the complete dataset. At 20% and 40% levels of missingness, 

the estimated mean regression coefficient for β̂3 and β̂4 were closest in values to the mean 

regression coefficients from the complete dataset, respectively. Generally, the estimated 

mean regression coefficients decreased as the level of missingness increased from 10% t0 

40% and then increased from 40% to 50% level of missingness for the PMM method. 

For the CART method, the estimated mean regression coefficients for β̂1, β̂2 and β̂4 were 

closest in value to the mean regression coefficients from the complete dataset at 10% level 

of missingness. At 30% level of missingness, the estimated mean regression coefficients 

for β̂0 and β̂3 were closest in value to the mean regression coefficients from the complete 

dataset. Generally, the estimated mean regression coefficients decreased as the level of 

missingness increases from 10% t0 20% and then increased from 20% to 50% level of 

missingness for the CART methods as shown in table 27. 

Considering the imputed dataset for the RF method as shown in table 29, the estimated 

mean  regression  coefficients  for  β̂1,  β̂2were  closest  in  value  to  the  mean  regression 

coefficients from the complete dataset at 10% level of missingness. At 20% level of 

missingness, the estimated mean regression coefficients for  β̂0  and  β̂3  were closest in 

value to the mean regression coefficients from the complete dataset and finally at 30% 
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level  of  missingness,  the  estimated  mean  regression  coefficient  for  β̂4  was  closest  in 

values to the mean regression coefficient from the complete dataset. Generally, the 

estimated mean regression coefficients increased as the level of missingness increased 

from 10% t0 20% and then decreased from 20% to 30% level of missingness and then 

increased from 30%-50% level of missingness for the RF method. 

As indicated in tables 26,28 and 30, the PDI of the CART method is closest to zero among 

the three imputation methods which implied that the PMM is the best imputation method 

when considering this type of data. 

At 10% level of missingness, the R2 values for the PMM, CART and RF methods are closest 

in value to the R2 value of the complete dataset. The R2 values decreased as the level of 

missingness increased from 10% to 50%. 

Table 25. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 30 with small variability from the PMM method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 

value 
10% -113860.7 -2580.082 2135.510 1696.407 112.207 0.8323 
20% -156668.1 -1611.734 2334.245 2389.058 77.746 0.8450 
30% -133906.7 -1747.793 2339.214 2008.822 101.513 0.7879 
40% -145104.5 -1998.508 1652.049 2193.880 104.674 0.7488 
50% -108826.2 -3152.522 1689.462 1620.482 128.020 0.6980 

Actual Parameter from 
complete data set 

-82853.22 -3789.19 1832.32 1195.46 144.56 0.838 

 
Table 26. PDI for the estimated regression coefficients for sample size of 30 with small 

variability from the PMM model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.3742 -0.3191 0.1655 0.4190 -0.2238 0.0832 
20% 0.8909 -0.5746 0.2739 0.9984 -0.4622 0.2253 
30% 0.6162 -0.5387 0.2766 0.6804 -0.2978 0.1473 
40% 0.7513 -0.4726 -0.0984 0.8352 -0.2759 0.1479 
50% 0.3135 -0.1680 -0.0780 0.3555 -0.1144 0.0617 

Mean 0.5892 -0.4146 0.1079 0.6577 -0.2748 0.1331 
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Table 27. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 30 with small variability from the CART method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -99337.21 -2300.507 2277.565 1475.387 109.7196 0.8061 
20% -101935.9 -1880.861 3214.774 1539.970 79.2240 0.7684 
30% -93821.36 -1435.086 3755.843 1427.984 61.9492 0.6861 
40% -54746.93 -1745.642 3510.737 799.4550 85.2806 0.6148 
50% -44128.60 -2197.659 2989.593 658.9630 85.8674 0.5236 

Actual Parameter from 
complete data set 

-82853.22 -3789.19 1832.32 1195.46 144.56 0.838 

 
Table 28. PDI for the estimated regression coefficients for sample size of 30 with small 

variability from the CART model 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.1989 -0.3929 0.2430 0.2341 -0.2410 0.0844 
20% 0.2303 -0.5036 0.75448 0.2881 -0.4519 0.0635 
30% 0.1324 -0.6213 1.04977 0.1945 -0.5714 0.0368 
40% -0.3392 -0.5393 0.9160 -0.3312 -0.4100 -0.0141 
50% -0.4674 -0.4200 0.6315 -0.4487 -0.4060 -0.222 

Mean -0.0489 -0.4954 0.7189 -0.0126 -0.4161 -0.0508 
 

Table 29. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 30 with small variability from the RF method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -96548.73 -4196.755 1540.982 1404.631 154.8746 0.8254 
20% -91545.67 -310.2089 196.2865 1328.216 138.9847 0.7661 
30% -110879.9 -1896.349 2704.616 1641.696 104.2328 0.6897 
40% -102228.0 -2204.240 3366.193 1513.572 97.1247 0.6059 
50% -100531.4 -802.0412 4489.046 1513.686 52.7117 0.5316 

Actual Parameter from 
complete data set 

-82853.22 -3789.19 1832.32 1195.46 144.56 0.838 
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Table 30. PDI for the estimated regression coefficients for sample size of 30 with small 

variability from the RF model 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.1652 0.1075 -0.1589 0.1749 0.0713 0.0720 
20% 0.1049 -0.9181 -0.8928 0.1110 -0.0385 -0.327 
30% 0.3382 -0.4995 0.4760 0.3732 -0.2789 0.0818 
40% 0.2338 -0.4182 0.8371 0.2661 -0.3281 0.118 
50% 0.2133 -0.7883 1.4499 0.2661 -0.6353 0.0101 

Mean 0.2111 -0.5033 0.3422 0.2383 -0.2419 0.00928 
 

 Analysis for Sample size of 30 with regular variability 
 

We see from table 31 that at the 10% level of missingness for the PMM method, the 

estimated mean regression coefficient for β̂0, β̂1 and β̂4were closest in value to the mean 

regression coefficient from the complete dataset. At 30% levels of missingness, the 

estimated mean regression coefficient for β̂2was closest in values to the mean regression 

coefficients from the complete dataset and finally at 50% level of missingness, the 

estimated mean regression coefficient for β̂1 was closest in values to the mean regression 

coefficient from the complete dataset. Generally, the estimated mean regression 

coefficients decreased as the level of missingness decreased from 10% t0 30% and then 

increased from 30% to 50% level of missingness for the PMM method. 

For the CART method, the estimated mean regression coefficients for β̂0, β̂1,  β̂,  β̂3  and 

β̂4 were closest in value to the mean regression coefficients from the complete dataset at 

10% level of missingness. Generally, the estimated mean regression coefficients decreased 

as the level of missingness increases from 10% t0 20% and then increased from 20% to 

50% level of missingness for the CART methods as shown in table 33. 



UNDER PEER REVIEW 

34 

 

 

 
 
 
 

Considering the imputed dataset for RF method as shown in table 35, the estimated mean 

regression coefficients for β̂0, β̂1, β̂, β̂3 and β̂4 were closest in value to the mean regression 

coefficients from the complete dataset at 20% level of missingness. Generally, the 

estimated mean regression coefficients increased as the level of missingness increased 

from 10% t0 20% and then decreased from 20% to 30% level of missingness and then 

increased from 30%-50% level of missingness for the RF method. 

As indicated in tables 32, 34 and 36, the PDI of the CART method is closest to zero among 

the three imputation methods which implied that the CART is the best imputation method 

when considering this type of data. 

At 10% level of missingness, the R2 values for the PMM, CART and RF methods are closest 

in value to the R2 value of the complete dataset. The R2 values decreased as the level of 

missingness increased from 10% to 50%. 

Table 31. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 30 with regular variability from the PMM method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -65531.45 -3038.283 2443.910 1025.445 78.6124 0.8102 
20% -79177.26 -2968.759 2297.999 1222.981 85.9305 0.7941 
30% -95356.30 -1878.115 2204.837 1488.819 65.9907 0.7214 
40% -84585.33 -3184.238 2647.687 1339.289 65.1588 0.6191 
50% -83597.78 -3226.548 2690.413 1326.301 63.4450 0.5991 

Actual Parameter from 
complete data set 

-54833.35 -3789.19 1832.32 845.32 102.22 0.838 

 
Table 32. PDI for the estimated regression coefficients for sample size of 30 with regular 

variability from the PMM model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.1951 -0.1981 0.3337 0.2130 -0.2309 0.0626 
20% 0.4439 -0.2165 0.2541 0.4467 -0.1593 0.154 
30% 0.7390 -0.5043 0.2033 0.76124 -0.3544 0.169 
40% 0.5425 -0.1596 0.4449 0.5843 -0.3625 0.210 
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50% 0.5245 -0.1484 0.4683 0.5689 -0.3793 0.207 
Mean 0.4890 -0.2454 0.3409 0.5148 -0.2973 0.160 

 

Table 33. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 30 with regular variability from the CART method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -50560.78 -3942.212 2059.869 763.1116 113.1268 0.8231 
20% -81491.53 -2217.607 844.8390 1269.244 94.4400 0.7310 
30% -71488.29 -1164.968 2168.806 1102.110 73.4001 0.5554 
40% -65110.92 -1713.514 3629.544 998.3172 56.6923 0.4941 
50% -48822.49 -1604.709 4610.970 744.3413 45.9696 0.4610 

Actual Parameter from 
complete data set 

-54833.35 -3789.19 1832.32 845.32 102.22 0.838 

 
Table 34. PDI for the estimated regression coefficients for sample size of 30 with regular 

variability from the CART model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.0779 0.0403 0.1241 -0.0972 0.1066 0.0192 
20% 0.4861 -0.4147 -0.5389 0.5014 -0.0761 -0.008.4 
30% 0.3037 -0.6925 0.1836 0.3037 -0.2819 -0.03.67 
40% 0.1874 -0.5477 0.980 0.1809 -0.4453 0.0712 
50% -0.1096 -0.5765 1.5164 -0.1194 -0.5502 0.0321 

Mean 0.1579 -0.4382 0.4532 0.1539 -0.2494 0.0155 
 

Table 35. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 30 with regular variability from the RF method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -64149.01 -4196.755 1540.982 993.2241 109.5129 0.8253 
20% -61169.23 -3102.089 1962.865 939.1905 98.2770 0.7661 
30% -75693.21 -1896.349 2704.616 1160.854 73.7037 0.6897 
40% -69751.49 -2204.240 3366.193 1070.257 68.67754 0.6059 
50% -69673.64 -829.6779 4482.022 1071.819 37.3873 0.5316 

Actual Parameter from 
complete data set 

-54833.35 -3789.19 1832.32 845.32 102.22 0.838 



UNDER PEER REVIEW 

36 

 

 

 
 
 
 

Table 36. PDI for the estimated regression coefficients for sample size of 30 with regular 

variability from the RF model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.1698 0.1075 -0.1589 0.1749 0.0713 0.0730 
20% 0.1155 -0.1813 0.0712 0.1110 -0.0385 0.0156 
30% 0.3804 -0.4995 0.4760 0.3732 -0.2789 0.0902 
40% 0.2720 -0.4182 0.8371 0.2660 -0.3281 0.126 
50% 0.2706 -0.7810 1.4460 0.2679 -0.6342 0.114 

Mean 0.2417 -0.3545 0.5343 0.2386 -0.2417 0.0837 
 

 Analysis for Sample size of 30 with large variability 
 

We see from table 37 that at the 20% level of missingness for the PMM method, the 

estimated mean regression coefficient for β̂0, β̂2 and β̂3were closest in value to the mean 

regression coefficient from the complete dataset. At 30% levels of missingness, the 

estimated mean regression coefficient for β̂3 was closest in values to the mean regression 

coefficients from the complete dataset and finally at 10% level of missingness, the 

estimated mean regression coefficient for β̂4 was closest in values to the mean regression 

coefficient from the complete dataset. Generally, the estimated mean regression 

coefficients decreased as the level of missingness increased from 10% t0 40% and then 

increased from 40% to 50% level of missingness for the PMM method. 

For the CART method, the estimated mean regression coefficients for β̂0, β̂1 and β̂3 were 

closest in value to the mean regression coefficients from the complete dataset at 10% level 

of missing. At 30% level of missingness, the estimated mean regression coefficients for β̂2 

and β̂3 was closest in value to the mean regression coefficients from the complete dataset 

and at 40% level of missingness, the estimated mean regression coefficient for  β̂4  was 

closest in values to the mean regression coefficient from the complete dataset. Generally, 
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the estimated mean regression coefficients decreased as the level of missingness increases 

from 10% t0 30% and then increased from 30% to 50% level of missingness for the CART 

methods as shown in table 39. 

Considering the imputed dataset for RF method as shown in table 41, the estimated mean 

regression coefficients for β̂0, β̂1, β̂, β̂3 and β̂4 were closest in value to the mean regression 

coefficients from the complete dataset at 20% level of missingness. Generally, the 

estimated mean regression coefficients increased as the level of missingness increased 

from 10% t0 20% and then decreased from 20% to 30% level of missingness and then 

increased from 30%-50% level of missingness for the RF methods. 

As indicated in tables 38,40 and 42, the PDI of the CART method is closest to zero among 

the three imputation methods which implied that the CART is the best imputation method 

when considering this type of data. 

At 10% level of missingness, the R2 values for the PMM, CART and RF methods are closest 

in value to the R2 value of the complete dataset. The R2 values decreased as the level of 

missingness increased from 10% to 50%. 

Table 37. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 30 with large variability from the PMM method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 

value 
10% -22117.53 -4860.589 2570.559 390.3774 76.7728 0.8572 
20% -33252.45 -4341.491 2186.129 582.6866 60.7146 0.7681 
30% -45248.03 -3807.438 1299.328 785.1202 55.9785 0.7536 
40% -46400.55 -3520.290 1376.959 809.2406 49.5510 0.6960 
50% -41112.64 -5470.598 1209.332e 758.7642 51.5799 0.6.663 

Actual Parameter from 
complete data set 

-35020.31 -3789.19 1832.32 597.73 72.28 0.838 
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Table 38. PDI for the estimated regression coefficients for sample size of 30 with large 

variability from the PMM model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.3684 0.2827 0.4028 -0.3469 0.0621 0.0065 
20% -0.0504 0.1457 0.1930 -0.0251 -0.1600 0.0206 
30% 0.2920 0.0048 -0.2908 0.3135 -0.2255 0.0188 
40% 0.3249 -0.0709 -0.2485 0.3538 -0.3144 0.0089 
50% 0.1739 0.4437 -0.3399 0.2694 -0.2863 0.0521 

Mean 0.0744 0.1612 -0.0566 0.1129 -0.1848 0.0214 
 

Table 39. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 30 with large variability from the CART method 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 

value 
10% -31946.36 -3942.212 2059.86 539.6014 79.9927 0.8231 
20% -53975.19 -2245.837 759.7 901.7992 67.3925 0.7319 
30% -56282.21 -2852.966 -1100.05 972.6104 79.5794 0.6652 
40% -54289.70 -3553.769 387.86 932.2304 69.5446 0.6848 
50% -38753.6 -4100.374 1433.102 667.9877 76.5142 0.6181 

Actual Parameter from 
complete data set 

-35020.31 -3789.19 1832.32 597.73 72.28 0.838 

 
Table 40. PDI for the estimated regression coefficients for sample size of 30 with large 

variability from the CART model 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.0877 0.0403 0.1241 -0.0972 0.1067 0.0173 
20% 0.5412 -0.4073 -0.5853 0.50870 -0.0676 -0.00206 
30% 0.6071 -0.2470 -1.6003 0.6271 0.1009 -0.102 
40% 0.5502 -0.0621 -0.7883 0.5596 -0.0378 0.0443 
50% 0.1066 0.0821 -0.2178 0.1175 0.0585 0.0294 

Mean 0.3434 -0.1188 -0.6135 0.3431 0.0321 -0.00271 
 

Table 41. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 30 with large variability from the RF method 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -41238.96 -4196.755 1540.982 702.3155 77.4373 0.8253 
20% -39689.85 -3102.089 1962.865 664.1080 69.4923 0.7661 
30% -50812.45 -1896.349 2704.616 820.8479 52.1164 0.6896 
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40% -46787.16 -2204.240 3366.193 756.7860 48.5623 0.6059 

50% -47821.45 -827.1917 4467.267 759.0041 26.4521 0.5316 
Actual Parameter from 

complete data set 
-35020.31 -3789.19 1832.32 597.73 72.28 0.838 

 
Table 42. PDI for the estimated regression coefficients for sample size of 30 with large 

variability from the RF model 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.1775 0.1075 -0.1589 0.1749 0.0713 0.0745 
20% 0.1333 -0.1813 0.0712 0.1110 -0.0385 0.0191 
30% 0.4509 -0.4995 0.4760 0.3732 -0.2789 0.104 
40% 0.3360 -0.4182 0.8371 0.2661 -0.3281 0.139 
50% 0.3655 -0.7816 1.4380 0.2698 -0.6340 0.132 

Mean 0.2926 -0.3546 0.5326 0.2390 -0.2416 0.0936 
 

 Analysis for Sample size of 150 with small variability 
 

We see from table 43 that at the 10% level of missingness for the PMM method, the 

estimated mean regression coefficient for β̂1, β̂2 and β̂4 were closest in value to the mean 

regression coefficient from the complete dataset. At 30% levels of missingness, the 

estimated mean regression coefficient for β̂3 was closest in values to the mean regression 

coefficients from the complete dataset and finally at 40% level of missingness, the 

estimated mean regression coefficient for β̂0 was closest in values to the mean regression 

coefficient from the complete dataset. Generally, the estimated mean regression 

coefficients increased as the level of missingness increases from 10% t0 30% and then 

decreased from 30% to 40% level of missingness and increased as the level of missingness 

increased from 40% to 50%for the PMM method. 

For the CART method, the estimated mean regression coefficients for  β̂0  and β̂3  were 

closest in value to the mean regression coefficients from the complete dataset at 40% level 
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of missing. At 30% level of missingness, the estimated mean regression coefficient for β̂2 

was closest in value to the mean regression coefficients from the complete dataset. At 20% 

level of missingness, the estimated mean regression coefficients for β̂1 was closest in value 

to the mean regression coefficients from the complete dataset and at 10% level of 

missingness, the estimated mean regression coefficient for β̂4 was closest in values to the 

mean regression coefficient from the complete dataset. Generally, the estimated mean 

regression coefficients increased as the level of missingness increases from 10% t0 30% 

and then decreased from 30% to 40% level of missingness and increased as the level of 

missingness increased from 40% to 50% for the CART methods as shown in table 45. 

Considering the imputed dataset for RF method as shown in table 47, the estimated mean 

regression coefficients for β̂0, β̂1, β̂, β̂3 and β̂4 were closest in value to the mean regression 

coefficients from the complete dataset at 40% level of missingness. Generally, the 

estimated mean regression coefficients decreased as the level of missingness increased 

from 10% t0 20% and then increased from 20% to 30% level of missingness for the RF 

method. 

As indicated in tables 44, 46 and 48, the PDI of the RF method is closest to zero among 

the three imputation methods which implied that the RF is the best imputation method 

when considering this type of data. 

At 10% level of missingness, the R2 values for the PMM and CART methods are closest in 

value to the R2 value of the complete dataset while the R2 values for the RF was closest in 

value to the R2 value of the complete dataset at 20% level of missingness. The R2 values 

decreased as the level of missingness increased from 10% to 50%. 
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Table 43. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 150 with small variability from the PMM method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 

value 
10% -118078.9 -1429.335 3013.996 1760.631 87.9979 0.7946 
20% -115893.9 -1254.654 3098.745 1733.170 82.3694 0.7526 
30% -107945.8 -1072.670 3220.420 1608.224 81.5652 0.7103 
40% -111749.1 -1097.122 3077.236 1699.409 66.7475 0.6694 
50% -104524.2 -863.6152 3492.913 1571.097 67.6798 0.6143 

Actual Parameter from 
complete data set 

-110813.37 -1836.14 2562.31 1640.85 103.70 0.8348 

 
Table 44. PDI for the estimated regression coefficients for sample size of 150 with small 

variability from the PMM model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.0655 -0.2215 0.1762 0.0729 -0.1514 -0.0116 
20% 0.0458 -0.3166 0.2093 0.0562 -0.2056 -0.0422 
30% -0.0258 -0.4158 0.2568 -0.0198 -0.2134 -0.0836 
40% 0.0084 -0.4024 0.2009 0.0356 -0.3563 -0.103 
50% -0.0567 -0.5296 0.3631 -0.0425 -0.3473 -0.123 

Mean 0.0074 -0.3772 0.2413 0.0205 -0.2548 -0.0726 
 

Table 45. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 150 with small variability from the CART method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -102907.7 -1628.733 2982.426 1516.744 97.2257 0.8155 
20% -100714.5 -1780.314 3134.771 1485.533 96.0357 0.7787 
30% -95351.90 -2612.785 2525.731 1437.250 96.1608 0.7038 
40% -108170.6 -1544.029 2773.228 1630.390 83.6000 0.6657 
50% -82833.52 -1999.472 3301.893 1246.614 79.0813 0.58025 

Actual Parameter from 
complete data set 

-110813.37 -1836.14 2562.31 1640.85 103.70 0.8348 

 
Table 46. PDI for the estimated regression coefficients for sample size of 150 with small 

variability from the CART model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.0713 -0.1129 0.1639 -0.0756 -0.0624 -0.0317 
20% -0.0911 -0.0304 0.2234 -0.0946 -0.0739 -0.0133 
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30% -0.1395 0.4229 -0.0142 -0.1240 -0.0727 0.0145 
40% -0.0238 -0.1590 0.0823 -0.0063 -0.1938 -0.0602 
50% -0.2524 0.0889 0.2886 -0.2402 -0.2374 -0.0705 

Mean -0.1156 0.0418 0.1488 -0.1082 -0.1280 -0.0322 
 
 

Table 47. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 150 with small variability from the RF method 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -918036.5 -1202.312 2330.547 1356.271 80.3034 0.65714 
20% -1.23067.1 -1075.600 2645.771 1838.881 89.2696 0.7383 
30% -115982.6 -1435.003 2149.948 1736.514 96.7736 0.68097 
40% -112277.9 -1661.330 2486.606 1661.201 10.4163 0.62659 
50% -76741.67 -915.8124 2124.596 1150.838 55.1839 0.37593 

Actual Parameter from 
complete data set 

-110813.37 -1836.14 2562.31 1640.85 103.70 0.8348 

 
Table 48. PDI for the estimated regression coefficients for sample size of 150 with small 

variability from the RF model 

FMI/ Estimated Parameter βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 
10% -0.1715 -0.3451 -0.0904 -0.1734 -0.2256 -0.201 
20% 0.1105 -0.4142 0.0325 0.1206 -0.1391 -0.579 
30% 0.0466 -0.2184 -0.1609 0.0583 -0.0667 -0.682 
40% 0.0132 -0.0952 -0.0295 0.0124 0.0044 -0.189 
50% -0.3074 -0.5012 -0.1708 -0.2986 -0.4678 -0.349 

Mean -0.0617 -0.3148 -0.0838 -0.0561 -0.1789 -0.139 
 

 Analysis for Sample size of 150 with regular variability 
 

We see from table 49 that at the 50% level of missingness for the PMM method, the 

estimated mean regression coefficient for  β̂1, and  β̂4  were closest in value to the mean 

regression coefficient from the complete dataset. At 10% levels of missingness, the 

estimated mean regression coefficient for β̂0  and  β̂3 were closest in values to the mean 

regression coefficients from the complete dataset and at 20% level of missingness, the 

estimated mean regression coefficient for β̂2 was closest in values to the mean regression 
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coefficient from the complete dataset. Generally, the estimated mean regression 

coefficients increased as the level of missingness increases from 10% t0 20% and then 

decreased from 20% to 40% level of missingness and increased as the level of missingness 

increased from 40% to 50% for the PMM methods. 

For the CART method, the estimated mean regression coefficients for β̂2, β̂3 and β̂4 were 

closest in value to the mean regression coefficients from the complete dataset at 10% level 

of missing. At 20% level of missingness, the estimated mean regression coefficient for β̂1 

was closest in value to the mean regression coefficients from the complete dataset. At 30% 

level  of  missingness,  the  estimated  mean  regression  coefficients  for  β̂0  was  closest  in 

value to the mean regression coefficients from the complete dataset and at 10% level of 

missingness, the estimated mean regression coefficient for β̂4 was closest in values to the 

mean regression coefficient from the complete dataset. Generally, the estimated mean 

regression coefficients increased as the level of missingness increases from 10% t0 20% 

and then decreased from 20% to 30% level of missingness and increased as the level of 

missingness increased from 30% to 50% for the CART methods as shown in table 51. 

Considering the imputed dataset for RF method as shown in table 53, the estimated mean 

regression coefficients for β̂0, β̂1, β̂2 and β̂3 were closest in value to the mean regression 

coefficients from the complete dataset at 40% level of missingness and the estimated 

mean   regression   coefficients  for   β̂4   was   closest   in  value  to   the   mean   regression 

coefficients from the complete dataset at 20% level of missingness. Generally, the 

estimated mean regression coefficients increased as the level of missingness increased 

from 10% t0 30% and then decreased from 30% to 40% level of missingness and then 

increased from 40% to 50% for the RF method. 
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As indicated in tables 50, 52 and 54, the PDI of the RF method is closest to zero among 

the three imputation methods which implied that the RF is the best imputation method 

when considering this type of data. 

At 10% level of missingness, the R2 values for the PMM, CART and RF methods are closest 

in value to the R2 value of the complete dataset. The R2 values decreased as the level of 

missingness increased from 10% to 50%. 

Table 49. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 150 with regular variability from the PMM method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -68418.93 -1715.239 2869.865 1043.860 71.0455 0.8137 
20% -53680.58 -2487.864 2857.182 826.0395 75.9775 0.7607 
30% -63845.87 -1921.492 2154.049 991.3947 74.8979 0.7207 
40% -65795.56 -1995.437 2010.302 1036.340 68.3756 0.6820 
50% -58605.98 -1816.970 1965.771 915.5013 72.1129 0.6338 

Actual Parameter from 
complete data set 

-75661.50 -1836.14 2562.31 1160.26 73.33 0.8348 

 
Table 50. PDI for the estimated regression coefficients for sample size of 150 with regular 

variability from the PMM model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.0957 -0.0658 0.1200 -0.1003 -0.0311 -0.0346 
20% -0.2905 0.3549 0.1150 -0.2880 0.0361 -0.0145 
30% -0.1561 0.0464 -0.1593 -0.1455 0.0213 -0.078 
40% -0.1303 0.0867 -0.2154 -0.1068 -0.0675 -0.0867 
50% -0.2254 -0.0104 -0.2328 -0.2109 -0.0165 -0.139 

Mean -0.1796 0.0823 -0.0744 -0.1703 -0.0115 -0.0707 

 
Table 51. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 150 with regular variability from the CART method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -70366.74 -1628.733 2982.426 1072.500 68.7489 0.8155 
20% -68735.21 -1785.593 3135.918 1049.239 67.9262 0.7787 
30% -70875.99 -1162.476 4094.712 1076.384 51.9657 0.6909 
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40% -63791.61 -1356.133 3879.111 97.9725 50.1526 0.6331 
50% -61430.02 -1489.916 3255.575 959.2759 51.5242 0.5748 

Actual Parameter from 
complete data set 

-75661.50 -1836.14 2562.31 1160.26 73.33 0.8348 

 
Table 52. PDI for the estimated regression coefficients for sample size of 150 with regular 

variability from the CART model 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.0699 -0.1129 0.1639 -0.0756 -0.0624 -0.0314 
20% -0.0915 -0.0275 0.2238 -0.0956 -0.0736 -0.0129 
30% -0.0632 -0.3668 0.5980 -0.0722 -0.2913 -0.0391 
40% -0.1568 -0.2614 0.5139 -0.1555 -0.3160 -0.0752 
50% -0.1880 -0.1885 0.2705 -0.1732 -0.2973 -0.115 

Mean -0.1139 -0.1914 0.3540 -0.1144 -0.2081 -0.0548 
 

Table 53. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 150 with regular variability from the RF method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -77032.25 -1472.155 2853.521 1173.842 69.4731 0.8043 
20% -71390.21 -1013.830 3081.882 1064.546e 74.6474 0.7884 
30% -67221.43 -1032.892 2901.799 998.9650 78.5339 0.7420 
40% -70032.56 -966.6632 3077.508 1051.257 70.3241 0.7047 
50% -41941.60 -852.8873 1842.064 633.8131 45.1345 0.3903 

Actual Parameter from 
complete data set 

-75661.50 -1836.14 2562.31 1160.26 73.33 0.8348 

 
Table 54. PDI for the estimated regression coefficients for sample size of 150 with regular 

variability from the RF model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.0181 -0.1982 0.1136 0.0117 -0.0525 -0.0215 
20% -0.056 -0.4478 0.2027 -0.0824 0.0179 -0.0732 
30% -0.1115 -0.4374 0.1324 -0.1390 0.0709 -0.0969 
40% -0.0743 -0.4735 0.2010 -0.0939 -0.0409 -0.0964 
50% -0.4456 -0.5354 -0.2810 -0.4537 -0.3845 -0.420 

Mean -0.1339 -0.4185 0.0737 -0.1514 -0.0778 -0.142 
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 Analysis for Sample size of 150 with large variability 
 

We see from table 55 that at the 50% level of missingness for the PMM method, the 

estimated mean regression coefficient for  β̂1, and  β̂4  were closest in value to the mean 

regression coefficient from the complete dataset. At 10% levels of missingness, the 

estimated mean regression coefficient for β̂0  and  β̂3 were closest in values to the mean 

regression coefficients from the complete dataset and at 20% level of missingness, the 

estimated mean regression coefficient for β̂2 was closest in values to the mean regression 

coefficient from the complete dataset. Generally, the estimated mean regression 

coefficients increased as the level of missingness increases from 10% t0 20% and then 

decreased from 20% to 40% level of missingness and increased as the level of missingness 

increased from 40% to 50% for the PMM methods. 

For the CART method, the estimated mean regression coefficients for  β̂0  and β̂3  were 

closest in value to the mean regression coefficients from the complete dataset at 40% level 

of missing. At 50% level of missingness, the estimated mean regression coefficient for β̂1 

was closest in value to the mean regression coefficients from the complete dataset. At 30% 

level of missingness, the estimated mean regression coefficients for β̂2 was closest in value 

to the mean regression coefficients from the complete dataset and at 10% level of 

missingness, the estimated mean regression coefficient for β̂4 was closest in values to the 

mean regression coefficient from the complete dataset. Generally, the estimated mean 

regression coefficients increased as the level of missingness increases from 10% t0 20% 

and then decreased from 20% to 40% level of missingness and increased as the level of 

missingness increased from 40% to 50% for the CART methods as shown in table 57. 
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Considering the imputed dataset for RF method as shown in table 59, the estimated mean 

regression  coefficients for  β̂0,  β̂1  and  β̂3  were closest in  value  to the  mean  regression 

coefficients from the complete dataset at 10% level of missingness and the estimated 

mean   regression   coefficients  for   β̂4   was   closest   in  value  to   the   mean   regression 

coefficients from the complete dataset at 20% level of missingness and the estimated 

mean   regression   coefficients   for   β̂2   was   closest   in  value  to   the  mean   regression 

coefficients from the complete dataset at 40% level of missingness Generally, the 

estimated mean regression coefficients increased as the level of missingness increased 

from 10% t0 30% and then decreased from 30% to 40% level of missingness and then 

increased from 40% to 50% for the RF method. 

As indicated in tables 56, 58 and 60, the PDI of the RF method is closest to zero among 

the three imputation methods which implied that the RF is the best imputation method 

when considering this type of data. 

At 10% level of missingness, the R2 values for the PMM, CART and RF methods are closest 

in value to the R2 value of the complete dataset. The R2 values decreased as the level of 

missingness increased from 10% to 50%. 

Table 55. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 150 with large variability from the PMM method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -45884.07 -1715.676 2869.556 738.2494 50.2121 0.8136 
20% -35161.10 -2481.368 285.6624 584.0148 53.7719 0.7608 
30% -42104.09 -1919.455 2155.048 699.6423 53.0512 0.7207 
40% -43593.34 -1990.290 2013.114 734.4150 48.2105 0.6818 
50% -38459.31 -1818.529 1967.988 646.7120 51.0173 0.6337 

Actual Parameter from 
complete data set 

-50805.367 -1836.137 2562.310 820.425 51.850 0.8348 
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Table 56. PDI for the estimated regression coefficients for sample size of 150 with large 

variability from the PMM model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.0968 -0.0656 0.1199 -0.1001 -0.0315 -0.0349 
20% -0.3079 0.3514 0.1148 -0.2881 0.0370 -0.0185 
30% -0.1712 0.0453 -0.1589 -0.1472 0.0231 -0.0818 
40% -0.1419 0.0839 -0.2143 -0.1048 -0.0701 -0.0895 
50% -0.2430 -0.0095 -0.2319 -0.2117 -0.0160 -0.142 

Mean -0.1922 0.0811 -0.0740 -0.1704 -0.0115 -0.0734 

 
Table 57. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 150 with large variability from the CART method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 

value 
10% -47356.82 -1628.733 2982.426 758.3721 48.6128 0.8155 
20% -46249.62 -1782.709 3137.464 742.6380 48.0028 0.7787 
30% -48010.87 -1784.518 2898.325 777.3723 47.0297 0.7261 
40% -49414.50 -1220.237 3588.942 786.7089 38.5480 0.6658 
50% -40660.05 -1884.456 3068.734 675.9959 39.4289 0.6075 

Actual Parameter from 
complete data set 

-50805.367 -1836.137 2562.310 820.425 51.850 0.8348 

 
Table 58. PDI for the estimated regression coefficients for sample size of 150 with large 

variability from the CART model 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.0678 -0.1129 0.1639 -0.0756 -0.0624 -0.0310 
20% -0.0896 -0.0290 0.2244 -0.0948 -0.0741 -0.0127 
30% -0.0550 -0.0281 0.1311 -0.0524 -0.0929 -0.0195 
40% -0.0273 -0.3354 0.4006 -0.0410 -0.2565 -0.0520 
50% -0.1996 0.0263 0.1976 -0.1760 -0.2395 -0.0783 

Mean -0.0879 -0.0958 0.2235 -0.0880 -0.1451 -0.0387 
 

Table 59. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 150 with large variability from the RF method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -52049.64 -1472.155 2853.521 830.0320 49.1249 0.8043 
20% -48327.16 -1013.830 3081.882 752.7475 52.7837 0.7884 
30% -45296.77 -1035.526 2895.720 706.7186 55.5795 0.7422 
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40% -45412.53 -785.6756 2655.283 715.3982 53.5476 0.6911 
50% -31214.19 -395.5668 2217.603 486.3431 29.8140 0.4196 

Actual Parameter from 
complete data set 

-50805.367 -1836.137 2562.310 820.425 51.850 0.8348 

 
Table 60. PDI for the estimated regression coefficients for sample size of 150 with large 

variability from the RF model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.0244 -0.1982 0.1137 0.0117 -0.0526 -0.0202 
20% -0.0487 -0.4478 0.2028 -0.0825 0.0180 -0.0717 
30% -0.1084 -0.4360 0.1301 -0.1386 0.0719 -0.0962 
40% -0.1061 -0.5721 0.0363 -0.1280 0.0327 -0.1470 
50% -0.3856 -0.7846 -0.1345 -0.4072 -0.4250 -0.4270 

Mean -0.1249 -0.4878 0.0697 -0.1489 -0.0710 -0.1530 
 

 Analysis for Sample size of 500 with small variability 
 

We see from table 61 that at the 10% level of missingness for the PMM method, the 

estimated mean regression coefficient for β̂0, β̂1, β̂2,  β̂3 and  β̂4  were closest in value to 

the mean regression coefficient from the complete dataset. Generally, the estimated mean 

regression coefficients decreased as the level of missingness increases from 10% t0 20% 

and then increased from 20% to 50% level of missingness for the PMM methods. 

For the CART method, the estimated mean regression coefficients for β̂0, β̂1 and β̂4 were 

closest in value to the mean regression coefficients from the complete dataset at 10% level 

of missing. At 50% level of missingness, the estimated mean regression coefficients for β̂3 

was closest in value to the mean regression coefficients from the complete dataset. At 40% 

level of missingness, the estimated mean regression coefficient for β̂2 was closest in value 

to the mean regression coefficients from the complete dataset. Generally, the estimated 

mean regression coefficients decreased as the level of missingness increases from 10% t0 
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20% and then increased from 20% to 50% level of missingness for the CART methods as 

shown in table 63. 

Considering the imputed dataset for RF method as shown in table 65, the estimated mean 

regression  coefficients for  β̂2,  β̂3  and  β̂4  were  closest in value to the  mean  regression 

coefficients from the complete dataset at 20% level of missingness and the estimated 

mean regression coefficients for β̂1 was closest in value to the mean regression coefficients 

from the complete dataset at 10% level of missingness and the estimated mean regression 

coefficients  for  β̂0  was  closest  in  value  to  the  mean  regression  coefficients  from  the 

complete dataset at 40% level of missingness. Generally, the estimated mean regression 

coefficients decreased as the level of missingness increased from 10% t0 20% and then 

increased from 20% to 30% level of missingness and then decreased from 30% to 40% 

and then increased from 40% to 50% for the RF method. 

As indicated in tables 62, 64 and 66, the PDI of the RF method is closest to zero among 

the three imputation methods which implied that the RF is the best imputation method 

when considering this type of data. 

At 10% level of missingness, the R2 values for the PMM, CART and RF methods are closest 

in value to the R2 value of the complete dataset. The R2 values decreased as the level of 

missingness increased from 10% to 50%. 

Table 61. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 500 with small variability from the PMM method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -103893.00 -2462.6620 1957.6970 1553.9660 108.1973 0.7916 
20% -107215.70 -2251.3880 1961.5730 1617.7560 99.1899 0.7551 
30% -105920.50 -2213.5760 1820.1220 1610.0520 94.0290 0.7032 
40% -100686.90 -2082.3870 1833.8440 1531.9900 91.5546 0.6480 
50% -90633.97 -1991.9760 1914.2280 1378.6420 89.5345 0.5882 
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Actual Parameter from 
complete data set -103800.00 -2730.0000 1940.00 1548.00 113.7000 0.8370 

 
Table 62. PDI for the estimated regression coefficients for sample size of 500 with small 

variability from the PMM model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.0009 -0.0979 0.0091 0.0039 -0.0484 -0.0265 
20% 0.0329 -0.1753 0.0111 0.0451 -0.1276 -0.0428 
30% 0.0204 -0.1892 -0.0618 0.0401 -0.1730 -0.0727 
40% -0.0300 -0.2372 -0.0547 -0.0103 -0.1948 -0.1050 
50% -0.1268 -0.2703 -0.0133 -0.1094 -0.2125 -0.1460 

Mean -0.0205 -0.1940 -0.0219 -0.0061 -0.1513 -0.0788 
 

Table 63. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 500 with small variability from the CART method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 

value 
10% -105194.70 -2428.8030 2006.8170 1575.6590 106.2510 0.7949 
20% -112654.4 -2355.077 2034.343 1712.408 92.2291 0.7413 
30% -109857.3 -2012.258 2049.193 1671.442 87.8637 0.6935 
40% -100686.10 -2362.6750 1989.8700 1545.3710 83.7254 0.6301 
50% -100038.40 -2089.1280 1900.2290 1546.0220 76.5229 0.5626 

Actual Parameter from 
complete data set -103800.00 -2730.0000 1940.0000 1548.000 113.7000 0.8370 

 
Table 64. PDI for the estimated regression coefficients for sample size of 500 with small 

variability from the CART model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.0134 -0.1103 0.0344 0.0179 -0.0655 -0.0220 
20% 0.0853 -0.1373 0.0486 0.1062 -0.1888 -0.0172 
30% 0.0584 -0.2629 0.0563 0.0797 -0.2272 -0.0592 
40% -0.0300 -0.1346 0.0257 -0.0017 -0.2636 -0.0808 
50% -0.0362 -0.2348 -0.0205 -0.0013 -0.3270 -0.1240 

Mean 0.0182 -0.1760 0.0289 0.0402 -0.2144 -0.0606 
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Table 65. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 500 with small variability from the RF method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -95357.64 -2688.8900 1888.4290 1400.0080 123.9874 0.7937 
20% -101278.70 -2452.4290 1967.3700 1500.1890 114.9021 0.7444 
30% -99413.51 -2315.8420 2106.6770 1473.0740 110.5008 0.6914 
40% -100110.30 -2205.1490 2158.1920 1493.0530 103.3730 0.6175 
50% -95610.29 -2124.4950 2400.9050 1430.2050 95.3939 0.5485 

Actual Parameter from 
complete data set -103800.00 -2730.0000 1940.0000 1548.0000 113.7000 0.8370 

 
Table 66. PDI for the estimated regression coefficients for sample size of 500 with small 

variability from the RF model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.0813 -0.0151 -0.0266 -0.0956 0.0905 -0.0256 
20% -0.0243 -0.1017 0.0141 -0.0309 0.0106 -0.0264 
30% -0.0423 -0.1517 0.0859 -0.0484 -0.0281 -0.0369 
40% -0.0355 -0.1923 0.1125 -0.0355 -0.0908 -0.0483 
50% -0.0789 -0.2218 0.2376 -0.0761 -0.1610 -0.0600 

Mean -0.0525 -0.1365 0.0847 -0.0573 -0.0358 -0.0395 
 

 Analysis for Sample size of 500 with regular variability 
 

We see from table 67 that at the 10% level of missingness for the PMM method, the 

estimated mean regression coefficient for β̂0, β̂1, β̂2,  β̂3 and  β̂4  were closest in value to 

the mean regression coefficient from the complete dataset. Generally, the estimated mean 

regression coefficients decreased as the level of missingness increases from 10% t0 20% 

and then increased from 20% to 50% level of missingness for the PMM methods. 

For the CART method, the estimated mean regression coefficients for  β̂2  and β̂3  were 

closest in value to the mean regression coefficients from the complete dataset at 50% level 

of missing. At 10% level of missingness, the estimated mean regression coefficients for β̂3 

and  β̂4  were  closest  in  value  to  the  mean  regression  coefficients  from  the  complete 
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dataset. At 40% level of missingness, the estimated mean regression coefficient for β̂0 was 

closest in value to the mean regression coefficients from the complete dataset. Generally, 

the estimated mean regression coefficients decreased as the level of missingness increases 

from 10% t0 20% and then increased from 20% to 50% level of missingness for the CART 

methods as shown in table 69. 

Considering the imputed dataset for RF method as shown in table 71, the estimated mean 

regression coefficients for  β̂0, β̂2  and  β̂3  were  closest in value to the mean regression 

coefficients from the complete dataset at 20% level of missingness and the estimated 

mean regression coefficients for β̂1 was closest in value to the mean regression coefficients 

from the complete dataset at 10% level of missingness and the estimated mean regression 

coefficients  for  β̂4  was  closest  in  value  to  the  mean  regression  coefficients  from  the 

complete dataset at 40% level of missingness. Generally, the estimated mean regression 

coefficients decreased as the level of missingness increased from 10% t0 20% and then 

increased from 20% to 50% level of missingness for the RF method. 

As indicated in tables 68, 70 and 72, the PDI of the RF method is closest to zero among 

the three imputation methods which implied that the RF is the best imputation method 

when considering this type of data. 

At 10% level of missingness, the R2 values for the PMM, CART and RF methods are closest 

in value to the R2 value of the complete dataset. The R2 values decreased as the level of 

missingness increased from 10% to 50%. 

Table 67. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 500 with regular variability from the PMM method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -70244.06 -2461.573 1958.300 1098.599 76.5293 0.7915 
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20% -72592.93 -2253.0830 1964.1520 1142.7950 70.1314 0.7549 
30% -71740.61 -2212.2250 1819.5860 1139.1700 66.4620 0.7033 
40% -67961.05 -2085.6120 1831.4270 1081.8520 64.8342 0.6480 
50% -61096.22 -1986.0450 1914.1730 975.9748 63.3122 0.5883 

Actual Parameter from 
complete data set -70116.58 -2730.3890 1940.1970 1094.866 80.4270 0.8370 

 
Table 68. PDI for the estimated regression coefficients for sample size of 500 with regular 

variability from the PMM model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.0018 -0.0985 0.0093 0.0034 -0.0485 -0.0265 
20% 0.0353 -0.1748 0.0123 0.0438 -0.1280 -0.0423 
30% 0.0232 -0.1898 -0.0622 0.0405 -0.1736 -0.0724 
40% -0.0307 -0.2361 -0.0561 -0.0119 -0.1939 -0.1060 
50% -0.1286 -0.2726 -0.0134 -0.1086 -0.2128 -0.1470 

Mean -0.0198 -0.1944 -0.0220 -0.0066 -0.1514 -0.0788 
 

Table 69. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 500 with regular variability from the CART method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -71206.46 -2428.8020 2006.8170 1114.1590 75.1308 0.7949 
20% -76576.54 -2352.2960 2035.2870 1211.5850 65.1795 0.7415 
30% -71194.95 -2477.070 2069.316 1129.807 65.0326 0.7032 
40% -69535.82 -2182.6100 1876.5640 1105.6910 63.9851 0.6350 
50% -60128.91 -2302.2250 1909.2660 959.1289 66.6857 0.5858 

Actual Parameter from 
complete data set -70116.58 -2730.3890 1940.1970 1094.8660 80.4270 0.8370 

 
Table 70. PDI for the estimated regression coefficients for sample size of 500 with regular 

variability from the CART model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.0155 -0.1105 0.0343 0.0176 -0.0659 -0.0218 
20% 0.0921 -0.1385 0.0490 0.1066 -0.1896 -0.0161 
30% 0.0154 -0.0928 0.0665 0.0319 -0.1914 -0.0341 
40% -0.0083 -0.2006 -0.0328 0.0099 -0.2044 -0.0872 
50% -0.1424 -0.1568 -0.0159 -0.1240 -0.1709 -0.1220 

Mean -0.0055 -0.1398 0.0202 0.0084 -0.1644 -0.0562 
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Table 71. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 500 with regular variability from the RF method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -64111.75 -2688.9250 1888.6320 989.7214 87.6866 0.7936 
20% -65815.03 -2592.9720 1915.2900 1021.3500 83.4956 0.7434 
30% -64042.88 -2451.8920 2002.1750 994.2339 81.1726 0.6831 

40% -62631.29 -2319.6130 2081.6430 971.0694 79.0294 0.6260 
50% -59706.33 -2407.291 2174.290 932.3030 75.3107 0.5602 

Actual Parameter 
from complete data 

set 

 
-70116.58 

 
-2730.3890 

 
1940.1970 

 
1094.8660 

 
80.4270 

 
0.8370 

 
Table 72. PDI for the estimated regression coefficients for sample size of 500 with regular 

variability from the RF model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.0856 -0.0152 -0.0266 -0.0960 0.0903 -0.0266 
20% -0.0613 -0.0503 -0.0128 -0.0671 0.0382 -0.0307 
30% -0.0866 -0.1020 0.0319 -0.0919 0.0093 -0.0479 
40% -0.1068 -0.1504 0.0729 -0.1131 -0.0174 -0.0629 
50% -0.1485 -0.1183 0.1207 -0.1485 -0.0636 -0.0716 

Mean -0.0978 -0.0873 0.0372 -0.1033 0.0113 -0.0480 
 

 Analysis for Sample size of 500 with large variability 
 

We see from table 73 that at the 10% level of missingness for the PMM method, the 

estimated mean regression coefficient for  β̂1, β̂2 and β̂4 were closest in value to the mean 

regression coefficient from the complete dataset. At 30% level of missingness, βˆ0 was 

closest in value to the mean regression coefficient from the complete dataset and at 40% 

level of missingness, βˆ3 was closest in value to the mean regression coefficient from the 

complete dataset. Generally, the estimated mean regression coefficients increased as the 

level of missingness increases from 10% t0 50% for the PMM methods. 
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For the CART method, the estimated mean regression coefficients for β̂1, β̂2 and β̂4 were 

closest in value to the mean regression coefficients from the complete dataset at 10% level 

of missing. At 40% level of missingness, the estimated mean regression coefficients for 

β̂0  and  β̂3  were closest in value to the mean regression coefficients from the complete 

dataset. Generally, the estimated mean regression coefficients decreased as the level of 

missingness increases from 10% t0 20% and then increased from 20% to 50% level of 

missingness for the CART methods as shown in table 75. 

Considering the imputed dataset for RF method as shown in table 77, the estimated mean 

regression coefficients for  β̂0, β̂3  and  β̂4  were  closest in value to the mean regression 

coefficients from the complete dataset at 30% level of missingness and the estimated 

mean regression coefficients for β̂1 and β̂2  were closest in value to the mean regression 

coefficients from the complete dataset at 10% level of missingness. Generally, the 

estimated mean regression coefficients increased as the level of missingness increased 

from 10% t0 20% and then decreased from 20% to 30% level of missingness and increased 

from 30% to 50% for the RF method. 

As indicated in tables 74, 76 and 78, the PDI of the CART method is closest to zero among 

the three imputation methods which implied that the CART is the best imputation method 

when considering this type of data. 

At 10% level of missingness, the R2 values for the PMM, CART and RF methods are closest 

in value to the R2 value of the complete dataset. The R2 values decreased as the level of 

missingness increased from 10% to 50%. 
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Table 73. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 500 with large variability from the PMM method 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -48385.21 -2420.7740 1931.9760 811.5718 51.4061 0.8006 
20% -46815.54 -2366.1490 2017.0950 788.2721 49.4639 0.7672 
30% -46809.00 -2166.7340 2113.5000 787.2274 46.3549 0.7187 
40% -45842.28 -2162.6730 2031.9550 782.0615 42.5703 0.6789 
50% -43988.68 -1922.4720 2324.3070 748.3461 38.5242 0.6095 

Actual Parameter from 
complete data set -46269.08 -2730.3890 1940.1970 774.1870 56.8700 0.8370 

 
Table 74. PDI for the estimated regression coefficients for sample size of 500 with large 

variability from the PMM model 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.0457 -0.1134 -0.0042 0.0483 -0.0961 -0.0239 
20% 0.0118 -0.1334 0.0396 0.0182 -0.1302 -0.0388 
30% 0.0117 -0.2064 0.0893 0.0168 -0.1849 -0.0547 
40% -0.0092 -0.2079 0.0473 0.0102 -0.2514 -0.0822 
50% -0.0493 -0.2959 0.1980 -0.0334 -0.3226 -0.1010 

Mean 0.0021 -0.1914 0.0740 0.0120 -0.1970 -0.0601 

 
Table 75. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 500 with large variability from the CART method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -47173.18 -2428.8040 2006.8170 787.8292 53.1255 0.7949 
20% -50997.24 -2354.0570 2034.3330 856.4394 46.0923 0.7414 
30% -49159.38 -2336.4330 2155.6480 829.4511 43.7683 0.7028 
40% -45739.94 -2252.973 2157.513 775.1587 44.3250 0.6638 
50% -41715.28 -2265.8550 2118.6030 718.0899 42.8254 0.5901 

Actual Parameter from 
complete data set -46269.08 -2730.3890 1940.1970 774.1870 56.8700 0.8370 

 
Table 76. PDI for the estimated regression coefficients for sample size of 500 with large 

variability from the CART model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% 0.0195 -0.1105 0.0343 0.0176 -0.0658 -0.0210 
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20% 0.1022 -0.1378 0.0485 0.1062 -0.1895 -0.0141 
30% 0.0625 -0.1443 0.1110 0.0714 -0.2304 -0.0260 
40% -0.0114 -0.1749 0.1120 0.0013 -0.2206 -0.0587 
50% -0.0984 -0.1701 0.0920 -0.0725 -0.2470 -0.0992 

Mean 0.0149 -0.1475 0.0796 0.0248 -0.1907 -0.0438 
 

Table 77. Estimated mean of regression coefficients for each percentage of missingness 

for a sample size of 500 with large variability from the RF method. 

FMI/ Estimated 
Parameter/ R2 value 

βˆ0 β̂1 β̂2 β̂3 β̂4 R2 value 

10% -42023.05 -2690.2220 1887.9330 699.7680 61.9947 0.7937 
20% -41432.82 -2547.8700 2189.3830 681.0770 1.0374 0.7392 
30% -42045.18 -2608.2730 2249.2190 701.5647 55.1047 0.6605 
40% -38799.95 -2608.5330 2156.3560 655.2298 54.4928 0.6083 
50% -38809.45 -2493.2390 2045.1260 661.4966 51.5938 0.5430 

Actual Parameter from 
complete data set -46269.08 -2730.3890 1940.1970 774.1870 56.8700 0.8370 

 
Table 78. PDI for the estimated regression coefficients for sample size of 500 with large 

variability from the RF model. 

FMI/ Estimated 
Parameter 

βˆ0 β̂1 β̂2 β̂3 β̂4 Mean 

10% -0.0918 -0.0147 -0.0269 -0.0961 0.0901 -0.0279 
20% -0.1045 -0.0668 0.1284 -0.1203 -0.9818 -0.2290 
30% -0.0913 -0.0447 0.1593 -0.0938 -0.0310 -0.0203 
40% -0.1614 -0.0446 0.1114 -0.1537 -0.0418 -0.0580 
50% -0.1612 -0.0869 0.0541 -0.1456 -0.0928 -0.0865 

Mean -0.1220 -0.0516 0.0853 -0.1219 -0.2115 -0.0843 
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7. CONCLUSION 
 

A performance analysis on the 45 mixed datasets based on the PDI’s of the three different 

imputation methods showed that the CART method was the best imputation method for 

dataset with sample size of 30 with small, regular and large variabilities as well as datasets 

with sample size of 50o with large variability. On the other hand, the RF method was 

found to the best imputation method for datasets with sample size 150 with small, regular 

and large variabilities. Also, the RF method was the best imputation method for datasets 

with sample size of 500 with small and regular variabilities. 

Even though, the PMM method is considered as the default imputation method in the R 

package, the RF methods worked best mostly on a sample size of 150 and 500 datasets 

irrespective of the variability. The classification and regression tree imputation methods 

worked best mostly on sample size of 30 irrespective of the variability. 

For future works, studies should look at the best imputation methods for mixed dataset 

with a different statistic for measuring categorial variables (such as, the point biserial) 

and also look at the variability in the response variable. One could also look at different 

sample sizes as well. 
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